善意的投票&小M的作物 题解
善意的投票:
因为只有\(2\)种意愿,不妨让想睡午觉的和源点连边,让不想睡午觉的和汇点连边。对于每一对好朋友,在他们之间连边。那么只要源点和汇点还联通,就存在一对好友是冲突的,我们现在要做的就是删去最少的边,使得源点和汇点孤立,问题转化为最小割,用最大流求解即可。
#include <bits/stdc++.h>
int n,m;
int S,T;
int head[200000],tot=1;
int cur[200000];
int deep[200000];
std::queue<int>q;
struct edge{
int to;
int nxt;
int flow;
}e[200000];
void add(int x,int y,int flow){
e[++tot]={y,head[x],flow};
head[x]=tot;
e[++tot]={x,head[y],0};
head[y]=tot;
}
bool bfs(){
memset(deep,0,sizeof deep);
deep[S]=1;
q.push(S);
while(!q.empty()){
int X=q.front();
q.pop();
for(int i=head[X];i;i=e[i].nxt){
int y=e[i].to;
if(!deep[y]&&e[i].flow){
deep[y]=deep[X]+1;
q.push(y);
}
}
}
return deep[T];
}
int dfs(int x,int flow){
if(x==T||!flow)
return flow;
int Flow=0;
for(int &i=cur[x];i;i=e[i].nxt){
int y=e[i].to;
if(e[i].flow&&deep[y]==deep[x]+1){
if(int w=dfs(y,std::min(flow,e[i].flow))){
e[i].flow-=w;
e[i^1].flow+=w;
Flow+=w;
flow-=w;
if(!flow)
break;
}
}
}
return Flow;
}
void dinic(){
int maxflow=0;
while(bfs()){
memcpy(cur,head,sizeof head);
while(int w=dfs(S,0x3f3f3f3f))
maxflow+=w;
}
printf("%d\n",maxflow);
}
main(){
scanf("%d%d",&n,&m);
S=n+1;T=S+1;
for(int i=1,x;i<=n;++i){
scanf("%d",&x);
if(x)add(i,T,1);
else add(S,i,1);
}
for(int i=1,x,y;i<=m;++i){
scanf("%d%d",&x,&y);
add(x,y,1);
add(y,x,1);
}
dinic();
return 0;
}
再考虑小\(M\)的作物,按照之前的做法,对于每种作物,向源点和汇点分别连对应价值流量大小的边,考虑那些组合收益,假设我们需要获得那些作物在\(A\)中的收益,那么当组合中的所有点都和\(B\)断开后,我们才能保留这条边,所以我们可以这样连边:源点到这个点对应的点\(x\),流量为组合中的作物都种在\(A\)的价值,这个点向所有组合中的点连边,边权都为\(\infty\)。组合中的作物都对这个点对应的点\(x'\)连边,流量为\(\infty\),\(x'\)向汇点连边,流量为组合都种在\(B\)的价值。
问题得解。
#include <bits/stdc++.h>
#define int long long
int n,kind,S=1,T=2;
int ans;
int head[1000001],tot=1;
int cur[1000000];
int deep[5001];
struct edge{
int to,nxt,flow;
}e[4000000];
std::queue<int>q;
void add(int x,int y,int flow){
e[++tot]={y,head[x],flow};
head[x]=tot;
e[++tot]={x,head[y],0};
head[y]=tot;
}
bool bfs(){
while(!q.empty())q.pop();
memset(deep,-1,sizeof deep);
deep[S]=0;
for(int i=0;i<=tot;++i)
cur[i]=head[i];
q.push(S);
while(!q.empty()){
int X=q.front();
q.pop();
for(int i=head[X],y;i;i=e[i].nxt){
y=e[i].to;
if(deep[y]<0&&e[i].flow){
deep[y]=deep[X]+1;
q.push(y);
if(y==T)
return 1;
}
}
}
return 0;
}
int dfs(int x,int flow){
if(x==T||!flow)
return flow;
int Flow=0;
for(int &i=cur[x],y;i;i=e[i].nxt){
y=e[i].to;
if(e[i].flow&&deep[y]==deep[x]+1){
if(int w=dfs(y,std::min(flow,e[i].flow))){
e[i].flow-=w;
e[i^1].flow+=w;
Flow+=w;
flow-=w;
if(!flow)break;
}
}
}
if(!flow)
deep[x]=-1;
return Flow;
}
void dinic(){
while(bfs())
ans-=dfs(S,1e9);
printf("%lld\n",ans);
}
main(){
scanf("%lld",&n);
for(int i=1,x;i<=n;++i){
scanf("%lld",&x);
add(S,i+2,x);
ans+=x;
}
for(int i=1,x;i<=n;++i){
scanf("%lld",&x);
add(i+2,T,x);
ans+=x;
}
scanf("%d",&kind);
for(int i=1,th,valueA,valueB;i<=kind;++i){
scanf("%lld%lld%lld",&th,&valueA,&valueB);
ans+=valueA+valueB;
add(S,n+2+i,valueA);
add(n+2+i+kind,T,valueB);
for(int j=1,x;j<=th;++j){
scanf("%lld",&x);
add(n+2+i,2+x,1e6);
add(2+x,n+2+i+kind,1e6);
}
}
dinic();
return 0;
}
善意的投票&小M的作物 题解的更多相关文章
- luogu P1361 小M的作物
题目链接 luogu P1361 小M的作物 题解 源汇点为A,B 向种子连边,容量为价值,每个种子能与A或B联通,考虑最小割 用建边的总流量减去最小割就是答案 相同利益的时候新建节点,由额外利益构成 ...
- 「SHOI2007」「Codevs2341」 善意的投票(最小割
2341 善意的投票 2007年省队选拔赛上海市队选拔赛 时间限制: 5 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 幼儿园里有n个小朋 ...
- 洛谷 P1361 小M的作物 解题报告
P1361 小M的作物 题目描述 小M在MC里开辟了两块巨大的耕地\(A\)和\(B\)(你可以认为容量是无穷),现在,小\(P\)有\(n\)中作物的种子,每种作物的种子有1个(就是可以种一棵作物) ...
- C++之路进阶——bzoj1934(善意的投票)
F.A.Qs Home Discuss ProblemSet Status Ranklist Contest ModifyUser hyxzc Logout 捐赠本站 Notice:由于本OJ建立在 ...
- BZOJ 1934: [Shoi2007]Vote 善意的投票 最小割
1934: [Shoi2007]Vote 善意的投票 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnl ...
- BZOJ 3438: 小M的作物( 最小割 )
orz出题人云神... 放上官方题解... 转成最小割然后建图跑最大流就行了... ---------------------------------------------------------- ...
- 1934: [Shoi2007]Vote 善意的投票
1934: [Shoi2007]Vote 善意的投票 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 1174 Solved: 723[Submit][S ...
- 【BZOJ1934】善意的投票(网络流)
[BZOJ1934]善意的投票(网络流) 题面 Description 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然每个人都有自己 ...
- BZOJ 3438 小M的作物 & BZOJ 1877 [SDOI2009]晨跑
我由衷地为我的朋友高兴.哈哈,yian,当你nick name破百上千时,再打“蒟蒻”就会被打的. 好的,说正事吧.请注意,这还是题解.但我发现,网络流实在是太套路了(怪不得这两年几乎销声匿迹).我们 ...
随机推荐
- 别了,JavaScript;你好,Blazor
Web开发与JavaScript开发向来是同义词.直到WebAssembly的横空出世,WebAssembly (Wasm)是一种在浏览器中可以执行的二进制指令. WebAssembly 的 官方工具 ...
- 挑战程序竞赛 反转开关 poj3276
这个我其实也没有看太懂它的证明过程. 1.若某一个位置被翻转了n次,则其实际上被翻转了n%2次. 2.分析易知翻转的顺序并不影响最终结果. 3.现在我们着眼于第1个位置,可知若要将第1个位置进行翻转只 ...
- python学习笔记-零碎知识点
1. 绝对值 abs(-4) 结果: 4 2.
- maven的pom.xml配置文件相关依赖jar包
<!--声明变量--> <properties> <project.build.sourceEncoding>UTF-8</project.build.sou ...
- dumpsys-package
dumpsys-package ams和pms是android系统最重要的系统服务,本文解析dumpsys package命令,看哪些PMS相关的系统信息,数据结构是运行时可以查看的. 命令提示 co ...
- Git使用教程之SSH连接方式配置(二)
什么是GitHub?这个网站就是提供Git仓库托管服务的. 什么是SSH Key?你的本地Git仓库和GitHub仓库之间的传输是通过SSH加密的,大白话理解就是这两个仓库如果要进行远程同步,则我们需 ...
- NetCore项目实战篇06---服务注册与发现之consul
至此,我们的解决方案中新建了三个项目,网关(Zhengwei.Gateway).认证中心(Zhengwei.Identity)和用户资源API(Zhengwei.Use.Api).当要访问用户API的 ...
- 小姐姐教你定制一个Logstash Java Filter
Logstash是用来收集数据,解析处理数据,最终输出数据到存储组件的处理引擎.数据处理流程为: Logstash Java Filter 就是基于Logstash的Filter扩展API开发一个用J ...
- 5-JVM常用的命令
JVM常用的命令 jps :基础工具 查看JAVA进程PID. jps 命令用来查看所有 Java 进程,每一行就是一个 Java 进程信息. jps 仅查找当前用户的 Java 进程,而不是当前系统 ...
- Gitlab 修改ldap认证
1. 备份数据 2. 修改配置 使用自己搭建的openldap 使用用户中心的openldap 说明:base属性执行所有员工,user_filter属性主要用来实现分组功能.上面的配置是只有ldap ...