[题解] Luogu P4721 【模板】分治 FFT
分治FFT的板子为什么要求逆呢
这个想法有点\(cdq\)啊,就是考虑分治,在算一段区间的时候,我们把他分成两个一样的区间,然后先做左区间的,算完过后把左区间和\(g\)卷积一下,这样就可以算出左区间里的\(f\)对右边的贡献,然后再算右边的就好了。
手玩一组样例吧:g=[0,3,1,2](默认\(g[0] = 0\))
一开始,只有f[0]=1
f: [1 0|0 0]
然后我们从中间分开来,先算左边的
f: [1|0|0 0]
然后在分下去我们会找到\(f[0]\),就拿这一段和\(g\)数组卷积,得到\(f[1]\)
f: [1 3|0 0]
现在我们已经算完了左半段,拿\([1,3]\)和\([0,3,1,2]\)卷积,会得到这个序列\([0,3,10,5,6]\),
从$10 $开始,把值累加到右半段上
f: [1 3|10|5]
再对右半段分治,然后我们会访问到\(10\),发现只有一个数,回溯。这样我们有确定了一个左半段,再拿\([10]\)和\([0 ,3 ,1 ,2]\)卷积,就是\([0,30,10,20]\),然后把\(30\)开始的值累加到右半段上(\(f[3]\)开始的)
f: [1 3 10 35]
然后就做完了。
好我们来玩一下样例2!
做卷积的话可以\(NTT\),还有就是在开始就可以把原序列补成一个长度为\(2^k\)的数组,这样就避免了一些特殊情况。
分治的时候具体细节的话可以看代码
\(Code:\)
#include <bits/stdc++.h>
using namespace std;
const int N=300010,P=998244353,G=3,IG=(P+1)/G;
inline int fpow(int a,int b){
int ret=1; for (;b;b>>=1,a=1ll*a*a%P)
if(b&1)ret=1ll*ret*a%P;
return ret;
}
inline int add(int x,int y){return x+y>=P?x+y-P:x+y;}
inline int sub(int x,int y){return x-y<0?x-y+P:x-y;}
namespace Poly{
int rev[N];
void init(int limit){
for (int i=0;i<limit;i++) rev[i]=rev[i>>1]>>1|((i&1)?limit>>1:0);
}
void ntt(int *f,int n,int flg){
for (int i=0;i<n;i++)
if(rev[i]<i) swap(f[i],f[rev[i]]);
for (int len=2,k=1;len<=n;len<<=1,k<<=1){
int wn=fpow(flg==1?G:IG,(P-1)/len);
for (int i=0;i<n;i+=len){
for (int j=i,w=1;j<i+k;j++,w=1ll*w*wn%P){
int tmp=1ll*w*f[j+k]%P;
f[j+k]=sub(f[j],tmp),f[j]=add(f[j],tmp);
}
}
}
}
}
using Poly::ntt;
int ans[N],f[N],g[N],a[N],n;
void solve(int l,int r){
if (l+1>=r) return;
int mid=l+((r-l)>>1);
solve(l,mid);
int len=r-l;
Poly::init(len);
for (int i=0;i<len;i++) g[i]=a[i];
for (int i=l;i<mid;i++) f[i-l]=ans[i];
for (int i=mid;i<r;i++) f[i-l]=0;
ntt(f,len,1),ntt(g,len,1);
for (int i=0;i<len;i++) f[i]=1ll*f[i]*g[i]%P;
ntt(f,len,-1); int inv=fpow(len,P-2);
for (int i=mid;i<r;i++) ans[i]=add(ans[i],1ll*f[i-l]*inv%P);
solve(mid,r); // 注意一定要先把左半段的贡献加上去再算右边
}
int main(){
scanf("%d",&n);
for (int i=1;i<n;i++) scanf("%d",&a[i]);
int limit=1; while(limit<n)limit<<=1; // 补项
ans[0]=1,solve(0,limit);
for (int i=0;i<n;i++)printf("%d ",ans[i]);
return 0;
}
[题解] Luogu P4721 【模板】分治 FFT的更多相关文章
- 洛谷 P4721 [模板]分治FFT —— 分治FFT / 多项式求逆
题目:https://www.luogu.org/problemnew/show/P4721 分治做法,考虑左边对右边的贡献即可: 注意最大用到的 a 的项也不过是 a[r-l] ,所以 NTT 可以 ...
- 洛谷.4721.[模板]分治FFT(NTT)
题目链接 换一下形式:\[f_i=\sum_{j=0}^{i-1}f_jg_{i-j}\] 然后就是分治FFT模板了\[f_{i,i\in[mid+1,r]}=\sum_{j=l}^{mid}f_jg ...
- 解题:洛谷4721 [模板]分治FFT
题面 这是CDQ入门题,不要被题目名骗了,这核心根本不在不在FFT上啊=.= 因为后面的项的计算依赖于前面的项,不能直接FFT.所以用CDQ的思想,算出前面然后考虑给后面的贡献 #include< ...
- [题解] Luogu P4245 [模板]任意模数NTT
三模NTT 不会... 都0202年了,还有人写三模NTT啊... 讲一个好写点的做法吧: 首先取一个阀值\(w\),然后把多项式的每个系数写成\(aw + c(c < w)\)的形式,换句话说 ...
- HDU 4549题解 & luogu【模板】矩阵加速(数列)
M斐波那契数列 此题对数学基础要求较高 来源矩阵乘法_百度百科 一个m*n的矩阵是一个由m行n列元素排成的矩形阵列.矩阵里的元素可以是数字符号或者数学式. 形如[acbd][abcd]的数表称为二阶矩 ...
- 洛谷 P4721 【模板】分治 FFT 解题报告
P4721 [模板]分治 FFT 题目背景 也可用多项式求逆解决. 题目描述 给定长度为 \(n−1\) 的数组 \(g[1],g[2],\dots,g[n-1]\),求 \(f[0],f[1],\d ...
- [洛谷P4721]【模板】分治 FFT
题目大意:给定长度为$n-1$的数组$g_{[1,n)}$,求$f_{[0,n)}$,要求: $$f_i=\sum_{j=1}^if_{i-j}g_j\\f_0=1$$ 题解:直接求复杂度是$O(n^ ...
- P4721【模板】分治 FFT
瞎扯 虽然说是FFT但是还是写了一发NTT(笑) 然后忘了IDFT之后要除个n懵逼了好久 以及递归的时候忘了边界无限RE 思路 朴素算法 分治FFT 考虑到题目要求求这样的一个式子 \[ F_x=\S ...
- 洛谷P4721 【模板】分治 FFT(分治FFT)
传送门 多项式求逆的解法看这里 我们考虑用分治 假设现在已经求出了$[l,mid]$的答案,要计算他们对$[mid+1,r]$的答案的影响 那么对右边部分的点$f_x$的影响就是$f_x+=\sum_ ...
随机推荐
- 装系统:Win7,机子是Dell 5460,有半高的mSATA SSD
问题描述:Dell Vostro 5460有一个机械盘,有一个半高的mSATA SSD,现在想将系统重装到mSATA SSD上,但是机子BIOS的Boot选项没有mSATA,只有机械盘,怎么办? 解决 ...
- spring中的@Transactional注解
前几天灿哥问我,在做程序的时候,有没有考虑到事务,如果一个函数在中间执行过程中报错了,它会回滚么?我查了一查,spring确实有这样一个注解,能快速帮助我们配置事务管理.下面我就简单介绍一下这个注解. ...
- 吴裕雄--天生自然JAVA面向对象高级编程学习笔记:对象的多态性
class A{ // 定义类A public void fun1(){ // 定义fun1()方法 System.out.println("A --> public void fun ...
- 题解 nflsoj489 【六校联合训练 CSP #15】小D与随机
题目链接 考虑枚举好点的集合.此时要考虑的问题是如何填入\(1\sim n\)这些数使得恰好我们枚举到的这些点是好点,即:求出有多少种合法的填数方案. \(1\)号点一定是好点.那么除\(1\)号点外 ...
- NO18 linux开机自启动设置--开机流程--中文乱码--查看行数
第八题:装完系统后,希望让网络文件共享服务NES,仅在3级别上开机自启动,该如何做? 解答:什么是开机自启动,在Linux下软件服务随系统启动而启动的配置. 方法一:文件配置法,可以把要启动的服务的命 ...
- 学习进度-04 Scala的学习
在Scala中,主函数的定义是def main(args: Array[String]),Scala中必须使用对象方法 1.变量: Scala中的变量分为两种var和val. 例如:def main( ...
- 关于netty配置的理解serverBootstrap.option和serverBootstrap.childOption
The parameters that we set using ServerBootStrap.option apply to the ChannelConfig of a newly create ...
- ssh与scp
ssh命令用于linux 的远程登录,其默认端口为:22,在工作中常常会修改掉这一默认端口的值. scp命令用于远程的文件相互拷贝. scp远程文件拷贝: [root@jerry a]#ls ...
- other#docker
阿里云docker镜像加速地址:https://cr.console.aliyun.com/#/accelerator docker 安装: yum install -y yum-utils devi ...
- CSS样式表——格式与选择器
1.分类 1)内联(写在标签内部) style="样式" 控制精确,代码重用性差 2)内嵌(在<head></head>中) <style type= ...