Autograd

1、深度学习的算法本质上是通过反向传播求导数,Pytorch的Autograd模块实现了此功能;在Tensor上的所有操作,Autograd都能为他们自动提供微分,避免手动计算导数的复杂过程。
2、autograd.Variable是Autograd中的核心类,它简单的封装了Tensor,并支持几乎所有Tensor操作;Tensor被封装为Variable之后,可以调用它的.backward()实现反向传播,自动计算所有的梯度。
3、Variable主要包含三个属性:
data:保存Variable所包含的Tensor;
grad:保存data对应的梯度,grad也是个Variable,而不是Tensor,它和data的形状一样;
grad_fn:指向一个Function对象,这个Function用来反向传播计算输入的梯度。

具体代码解析

  1. #_Author_:Monkey
  2. #!/usr/bin/env python
  3. #-*- coding:utf-8 -*-
  4. import torch as t
  5. from  torch.autograd import Variable
  6. x = Variable(t.ones(2,2),requires_grad = True)
  7. print(x)
  8. '''''tensor([[1., 1.],
  9. [1., 1.]], requires_grad=True)'''
  10. y = x.sum()
  11. print(y)
  12. '''''tensor(4., grad_fn=<SumBackward0>)'''
  13. print(y.grad_fn)    #指向一个Function对象,这个Function用来反向传播计算输入的梯度
  14. '''''<SumBackward0 object at 0x000002D4240AB860>'''
  15. y.backward()
  16. print(x.grad)
  17. '''''tensor([[1., 1.],
  18. [1., 1.]])'''
  19. y.backward()
  20. print(x.grad)
  21. '''''tensor([[2., 2.],
  22. [2., 2.]])'''
  23. y.backward()
  24. print( x.grad )
  25. '''''tensor([[3., 3.],
  26. [3., 3.]])'''
  27. '''''grad在反向传播过程中时累加的(accumulated),这意味着运行
  28. 反向传播,梯度都会累加之前的梯度,所以反向传播之前需要梯度清零'''
  29. print( x.grad.data.zero_() )
  30. '''''tensor([[0., 0.],
  31. [0., 0.]])'''
  32. y.backward()
  33. print( x.grad )
  34. '''''tensor([[1., 1.],
  35. [1., 1.]])'''
  36. m = Variable(t.ones(4,5))
  37. n = t.cos(m)
  38. print(m)
  39. print(n)
  40. '''''tensor([[1., 1., 1., 1., 1.],
  41. [1., 1., 1., 1., 1.],
  42. [1., 1., 1., 1., 1.],
  43. [1., 1., 1., 1., 1.]])
  44. tensor([[0.5403, 0.5403, 0.5403, 0.5403, 0.5403],
  45. [0.5403, 0.5403, 0.5403, 0.5403, 0.5403],
  46. [0.5403, 0.5403, 0.5403, 0.5403, 0.5403],
  47. [0.5403, 0.5403, 0.5403, 0.5403, 0.5403]])'''
  48. m_tensor_cos = t.cos(m.data)
  49. print(m_tensor_cos)
  50. '''''ensor([[0.5403, 0.5403, 0.5403, 0.5403, 0.5403],
  51. [0.5403, 0.5403, 0.5403, 0.5403, 0.5403],
  52. [0.5403, 0.5403, 0.5403, 0.5403, 0.5403],
  53. [0.5403, 0.5403, 0.5403, 0.5403, 0.5403]])'''

Autograd:自动微分的更多相关文章

  1. pytorch学习-AUTOGRAD: AUTOMATIC DIFFERENTIATION自动微分

    参考:https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html#sphx-glr-beginner-blitz-autog ...

  2. 【PyTorch深度学习60分钟快速入门 】Part2:Autograd自动化微分

      在PyTorch中,集中于所有神经网络的是autograd包.首先,我们简要地看一下此工具包,然后我们将训练第一个神经网络. autograd包为张量的所有操作提供了自动微分.它是一个运行式定义的 ...

  3. PyTorch自动微分基本原理

    序言:在训练一个神经网络时,梯度的计算是一个关键的步骤,它为神经网络的优化提供了关键数据.但是在面临复杂神经网络的时候导数的计算就成为一个难题,要求人们解出复杂.高维的方程是不现实的.这就是自动微分出 ...

  4. PyTorch 自动微分示例

    PyTorch 自动微分示例 autograd 包是 PyTorch 中所有神经网络的核心.首先简要地介绍,然后训练第一个神经网络.autograd 软件包为 Tensors 上的所有算子提供自动微分 ...

  5. PyTorch 自动微分

    PyTorch 自动微分 autograd 包是 PyTorch 中所有神经网络的核心.首先简要地介绍,然后将会去训练的第一个神经网络.该 autograd 软件包为 Tensors 上的所有操作提供 ...

  6. LibTorch 自动微分

    得益于反向传播算法,神经网络计算导数时非常方便,下面代码中演示如何使用LibTorch进行自动微分求导. 进行自动微分运算需要调用函数 torch::autograd::grad( outputs, ...

  7. 附录D——自动微分(Autodiff)

    本文介绍了五种微分方式,最后两种才是自动微分. 前两种方法求出了原函数对应的导函数,后三种方法只是求出了某一点的导数. 假设原函数是$f(x,y) = x^2y + y +2$,需要求其偏导数$\fr ...

  8. 自动微分(AD)学习笔记

    1.自动微分(AD) 作者:李济深链接:https://www.zhihu.com/question/48356514/answer/125175491来源:知乎著作权归作者所有.商业转载请联系作者获 ...

  9. <转>如何用C++实现自动微分

    作者:李瞬生转摘链接:https://www.zhihu.com/question/48356514/answer/123290631来源:知乎著作权归作者所有. 实现 AD 有两种方式,函数重载与代 ...

  10. (转)自动微分(Automatic Differentiation)简介——tensorflow核心原理

    现代深度学习系统中(比如MXNet, TensorFlow等)都用到了一种技术——自动微分.在此之前,机器学习社区中很少发挥这个利器,一般都是用Backpropagation进行梯度求解,然后进行SG ...

随机推荐

  1. 微信小程序出现 Expecting 'STRING','NUMBER','NULL','TRUE','FALSE','{','[', got INVALID

    是因为,app.json中不能有注释,我将我上面注释的部分去掉,就可以了

  2. pandas.read_csv() 报错 OSError: Initializing from file failed,报错原因分析和解决方法

    今天调用pandas读取csv文件时,突然报错“ OSError: Initializing from file failed ”,我是有点奇怪的,以前用的好好的,read_csv(path)方法不是 ...

  3. [系统集成] 基于 elasticsearch 的企业监控方案

    注: 2017年10月16日: 使用中发现 es 查询时序数据的性能较差,且 watch 脚本的编写比较麻烦,因此已将监控系统切换到了 influxdb+grafana平台.新监控系统各方面情况比较满 ...

  4. 「luogu4462」[CQOI2018] 异或序列

    「luogu4462」[CQOI2018]异或序列 一句话题意 输入 \(n\) 个数,给定\(k\),共 \(m\) 组询问,输出第 \(i\) 组询问 \(l_i\) \(r_i\) 中有多少个连 ...

  5. [转】Python--遍历列表时删除元素的正确做法

    转自:https://blog.csdn.net/cckavin/article/details/83618306   一.问题描述 这是在工作中遇到的一段代码,原理大概和下面类似(判断某一个元素是否 ...

  6. 理解 Linux 的硬链接与软链接【转】

    转自:https://www.ibm.com/developerworks/cn/linux/l-cn-hardandsymb-links/index.html 从 inode 了解 Linux 文件 ...

  7. SQL解析

    private static String getCountSql(String sql) { return "select count(*) from "+cutOrderByO ...

  8. C# 解压缩工具类GZip

    using System; using System.Collections.Generic; using System.IO; using System.IO.Compression; using ...

  9. web文件下载

    web页面实现文件下载的几种方法 今天碰到文件下载的一些问题,本着知其然也要知其所以然的精神,站在巨人的肩膀上深入学习和测试了一下,抛砖引玉,现在总结结论如下: 1)标准URL下载方式可以通过在web ...

  10. STM32F0使用LL库实现Modbus通讯

    在本次项目中,限于空间要求我们选用了STM32F030F4作为控制芯片.这款MCU不但封装紧凑,而且自带的Flash空间也非常有限,所以我们选择了LL库实现.本篇将说明基于LL实现USART通讯. 1 ...