Autograd:自动微分
Autograd
1、深度学习的算法本质上是通过反向传播求导数,Pytorch的Autograd模块实现了此功能;在Tensor上的所有操作,Autograd都能为他们自动提供微分,避免手动计算导数的复杂过程。
2、autograd.Variable是Autograd中的核心类,它简单的封装了Tensor,并支持几乎所有Tensor操作;Tensor被封装为Variable之后,可以调用它的.backward()实现反向传播,自动计算所有的梯度。
3、Variable主要包含三个属性:
data:保存Variable所包含的Tensor;
grad:保存data对应的梯度,grad也是个Variable,而不是Tensor,它和data的形状一样;
grad_fn:指向一个Function对象,这个Function用来反向传播计算输入的梯度。
具体代码解析
- #_Author_:Monkey
- #!/usr/bin/env python
- #-*- coding:utf-8 -*-
- import torch as t
- from torch.autograd import Variable
- x = Variable(t.ones(2,2),requires_grad = True)
- print(x)
- '''''tensor([[1., 1.],
- [1., 1.]], requires_grad=True)'''
- y = x.sum()
- print(y)
- '''''tensor(4., grad_fn=<SumBackward0>)'''
- print(y.grad_fn) #指向一个Function对象,这个Function用来反向传播计算输入的梯度
- '''''<SumBackward0 object at 0x000002D4240AB860>'''
- y.backward()
- print(x.grad)
- '''''tensor([[1., 1.],
- [1., 1.]])'''
- y.backward()
- print(x.grad)
- '''''tensor([[2., 2.],
- [2., 2.]])'''
- y.backward()
- print( x.grad )
- '''''tensor([[3., 3.],
- [3., 3.]])'''
- '''''grad在反向传播过程中时累加的(accumulated),这意味着运行
- 反向传播,梯度都会累加之前的梯度,所以反向传播之前需要梯度清零'''
- print( x.grad.data.zero_() )
- '''''tensor([[0., 0.],
- [0., 0.]])'''
- y.backward()
- print( x.grad )
- '''''tensor([[1., 1.],
- [1., 1.]])'''
- m = Variable(t.ones(4,5))
- n = t.cos(m)
- print(m)
- print(n)
- '''''tensor([[1., 1., 1., 1., 1.],
- [1., 1., 1., 1., 1.],
- [1., 1., 1., 1., 1.],
- [1., 1., 1., 1., 1.]])
- tensor([[0.5403, 0.5403, 0.5403, 0.5403, 0.5403],
- [0.5403, 0.5403, 0.5403, 0.5403, 0.5403],
- [0.5403, 0.5403, 0.5403, 0.5403, 0.5403],
- [0.5403, 0.5403, 0.5403, 0.5403, 0.5403]])'''
- m_tensor_cos = t.cos(m.data)
- print(m_tensor_cos)
- '''''ensor([[0.5403, 0.5403, 0.5403, 0.5403, 0.5403],
- [0.5403, 0.5403, 0.5403, 0.5403, 0.5403],
- [0.5403, 0.5403, 0.5403, 0.5403, 0.5403],
- [0.5403, 0.5403, 0.5403, 0.5403, 0.5403]])'''
Autograd:自动微分的更多相关文章
- pytorch学习-AUTOGRAD: AUTOMATIC DIFFERENTIATION自动微分
参考:https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html#sphx-glr-beginner-blitz-autog ...
- 【PyTorch深度学习60分钟快速入门 】Part2:Autograd自动化微分
在PyTorch中,集中于所有神经网络的是autograd包.首先,我们简要地看一下此工具包,然后我们将训练第一个神经网络. autograd包为张量的所有操作提供了自动微分.它是一个运行式定义的 ...
- PyTorch自动微分基本原理
序言:在训练一个神经网络时,梯度的计算是一个关键的步骤,它为神经网络的优化提供了关键数据.但是在面临复杂神经网络的时候导数的计算就成为一个难题,要求人们解出复杂.高维的方程是不现实的.这就是自动微分出 ...
- PyTorch 自动微分示例
PyTorch 自动微分示例 autograd 包是 PyTorch 中所有神经网络的核心.首先简要地介绍,然后训练第一个神经网络.autograd 软件包为 Tensors 上的所有算子提供自动微分 ...
- PyTorch 自动微分
PyTorch 自动微分 autograd 包是 PyTorch 中所有神经网络的核心.首先简要地介绍,然后将会去训练的第一个神经网络.该 autograd 软件包为 Tensors 上的所有操作提供 ...
- LibTorch 自动微分
得益于反向传播算法,神经网络计算导数时非常方便,下面代码中演示如何使用LibTorch进行自动微分求导. 进行自动微分运算需要调用函数 torch::autograd::grad( outputs, ...
- 附录D——自动微分(Autodiff)
本文介绍了五种微分方式,最后两种才是自动微分. 前两种方法求出了原函数对应的导函数,后三种方法只是求出了某一点的导数. 假设原函数是$f(x,y) = x^2y + y +2$,需要求其偏导数$\fr ...
- 自动微分(AD)学习笔记
1.自动微分(AD) 作者:李济深链接:https://www.zhihu.com/question/48356514/answer/125175491来源:知乎著作权归作者所有.商业转载请联系作者获 ...
- <转>如何用C++实现自动微分
作者:李瞬生转摘链接:https://www.zhihu.com/question/48356514/answer/123290631来源:知乎著作权归作者所有. 实现 AD 有两种方式,函数重载与代 ...
- (转)自动微分(Automatic Differentiation)简介——tensorflow核心原理
现代深度学习系统中(比如MXNet, TensorFlow等)都用到了一种技术——自动微分.在此之前,机器学习社区中很少发挥这个利器,一般都是用Backpropagation进行梯度求解,然后进行SG ...
随机推荐
- 关于vue中如何配置echarts以及使用方法
ECharts,一个使用 JavaScript 实现的开源可视化库,可以流畅的运行在 PC 和移动设备上,兼容当前绝大部分浏览器(IE8/9/10/11,Chrome,Firefox,Safari等) ...
- java中import详解
前言 import与package机制相关,这里先从package入手,再讲述import以及static import的作用. package package名称就像是我们的姓,而class名称就像 ...
- CSS字体渐变 & 隐藏浏览器滚动条 & grid布局(转载)
字体渐变 https://www.zhangxinxu.com/study/201104/css3-text-gradient-2.html 隐藏浏览器滚动条 https://blog.csdn. ...
- monkey日志解析
bash arg: -p (打印monkey命令携带的参数) bash arg: com.dapp.testAPP123 bash arg: --throttle bash arg: 200 bash ...
- TypeError: softmax() got an unexpected keyword argument 'axis'
出现这个问题,有几种解决办法,可以调低一下keras的版本,比如: pip install keras==2.1 不过还有个更方便的方法,从错误可知softmax中不包含axis这个参数,那么把axi ...
- day16——函数式编程和内置函数
编程的方法论 面向过程:找到问题的 函数式:不可变.不用变量保存状态.不修改变量 面向对象: 高阶函数: 满足俩个特性任意一个即为高阶函数 1.函数的传入参数是一个函数名 2.函数的返回值是一个函数名 ...
- Webpack自动化工程
近几年,前端各种框架工具层出不穷,从两三年前还是一个jQuery搞定全站,到之后requirejs/seajs,node,gulp/webpack,Angular/React/Vue,RN/weex的 ...
- .Net Core项目管理----Git的一些基本使用方法
使用git的基本操作 1.Git的克隆 git clone https://XXXXXXXXXXXXXXXXXXXXX 2.拉取 git pull 3.查询状态 git status 4.添加 git ...
- JVM学习资料
java虚拟机学习-深入理解JVM(1) java虚拟机学习-慢慢琢磨JVM(2) java虚拟机学习-慢慢琢磨JVM(2-1)ClassLoader的工作机制 java虚拟机学习-JVM内存管理 ...
- 小米平板4 Plus获取Root超级权限的步骤
小米平板4 Plus有么好方法开启Root权限?大家都清楚,Android机器有Root权限,一旦手机开启root相关权限,就可以实现更强大的功能,打比方大家部门的营销部门的同事,使用个别营销应用都需 ...