传送门


发现这是一个背包问题,而\(k\)又很大,考虑生成函数方式解决这个问题。

对于体积为\(1\)的物品的生成函数为\(\frac{1}{1 - x}\),体积为\(2\)的物品的生成函数为\(\frac{1}{1 - x^2}\),那么我们要求的就是\([x^k](\frac{1}{1-x})^n (\frac{1}{1-x^2})^m\)。

而\((\frac{1}{1-x})^n = (\frac{1}{1-x^2})^n \times (1 + x)^n\),所以原生成函数等于\((\frac{1}{1 - x^2})^{n+m}(1+x)^n\)。

注意到后面一部分\((1+x)^n\)只有\(n+1\)项。我们枚举\((1+x)^n\)中\(x^i\)项对答案产生的贡献,那么我们需要求出\([x^i](1+x)^n\)和\([x^{k-i}](\frac{1}{1-x^2})^{n+m}\)。前者由二项式定理可得为\(\binom{n}{i}\),后者可以发现相当于有\(n+m\)个容量为\(2\)、数量无限的物品,要从中取出\(\frac{k - i}{2}\)个物品的本质不同的方案数。这个问题是经典的插板模型,不难得到后者为\([2 \mid (k-i)] \binom{\frac{k-i}{2} + n + m - 1}{n + m - 1}\)。

那么我们需要求的就是\(\sum\limits_{i=0}^n \binom{n}{i}[2 \mid (k-i)] \binom{\frac{k-i}{2} + n + m - 1}{n + m - 1}\)。因为\(\frac{\binom{n}{i+1}}{\binom{n}{i}} = \frac{n-i}{i+1}\),\(\frac{\binom{n}{i}}{\binom{n-1}{i}} = \frac{n}{n-i}\),所以可以从小到大枚举\(i\)的过程中动态维护这两个组合数。

代码

Nowcoder217D msc的背包 背包、生成函数、组合的更多相关文章

  1. LuoguP4389 付公主的背包【生成函数+多项式exp】

    题目背景 付公主有一个可爱的背包qwq 题目描述 这个背包最多可以装10^5105大小的东西 付公主有n种商品,她要准备出摊了 每种商品体积为Vi,都有10^5105件 给定m,对于s\in [1,m ...

  2. Codeforces 1111D(退背包、排列组合)

    要点 优质题解 因为只有某type坏人全部分布在同一撇时,才能一次消灭.所以题目安排完毕后一定是type(x)和type(y)占一半,其余占另一半. 实际情况只有52*52种,则预处理答案 枚举某两种 ...

  3. C - Thief in a Shop - dp完全背包-FFT生成函数

    C - Thief in a Shop 思路 :严格的控制好k的这个数量,这就是个裸完全背包问题.(复杂度最极端会到1e9) 他们随意原来随意组合的方案,与他们都减去 最小的 一个 a[ i ] 组合 ...

  4. Luogu4389 付公主的背包(生成函数+多项式exp)

    显然构造出生成函数,对体积v的物品,生成函数为1+xv+x2v+……=1/(1-xv).将所有生成函数乘起来得到的多项式即为答案,设为F(x),即F(x)=1/∏(1-xvi).但这个多项式的项数是Σ ...

  5. P4389-付公主的背包【生成函数,多项式exp】

    正题 题目链接:https://www.luogu.com.cn/problem/P4389 题目大意 \(n\)种物品,第\(i\)种大小为\(v_i\),数量无限.对于每个\(s\in[1,m]\ ...

  6. 洛谷.1782.旅行商的背包(背包DP 单调队列)

    题目链接(卡常背包) 朴素的多重背包是: \(f[i][j] = \max\{ f[i-1][j-k*v[i]]+k*w[i] \}\),复杂度 \(O(nV*\sum num_i)\) 可以发现求\ ...

  7. nyoj860 又见01背包(背包变形)

    题目860 pid=860" style="text-decoration:none; color:rgb(55,119,188)">题目信息 执行结果 本题排行 ...

  8. luogu P4095 [HEOI2013]Eden 的新背包问题 多重背包 背包的合并

    LINK:Eden 的新背包问题 就是一个多重背包 每次去掉一个物品 询问钱数为w所能买到的最大值. 可以对于每次Q暴力dp 利用单调队列优化多重背包 这样复杂度是Qnm的. 发现过不了n==10的点 ...

  9. [CTS2019]珍珠(NTT+生成函数+组合计数+容斥)

    这题72分做法挺显然的(也是我VP的分): 对于n,D<=5000的数据,可以记录f[i][j]表示到第i次随机有j个数字未匹配的方案,直接O(nD)的DP转移即可. 对于D<=300的数 ...

随机推荐

  1. [六]JavaIO之 ByteArrayInputStream与ByteArrayOutputStream

      功能简介   ByteArrayInputStream 和 ByteArrayOutputStream 提供了针对于字符数组 byte [] 的标准的IO操作方式     ByteArrayInp ...

  2. Spring Boot 2.x(九):遇到跨域不再慌

    什么是跨域 首先,我们需要了解一下一个URL是怎么组成的: // 协议 + 域名(子域名 + 主域名) + 端口号 + 资源地址 http: + // + www.baidu.com + :8080/ ...

  3. Odd-e CSD Course Day 1

    First 強烈的建議,記得準備好當地的 SIM 卡及插座轉接頭,在這五天中很好用的 接下來,我就各個主題來介紹一下相關的心得.首先我們這五天裡會依照 Scrum 的流程,完全的跑過一次,從一開始的需 ...

  4. 从零开始学安全(三十五)●mysql 盲注手工自定义python脚本

    import requests import string #mysql 手动注入 通用脚本 适用盲注 可以跟具自己的需求更改 def home(): url="url" list ...

  5. 原生js及H5模拟鼠标点击拖拽

    一.原生js 1.拖拽的流程动作 鼠标按下 触发onmousedown事件 鼠标移动 触发onmousemove事件 鼠标松开 触发onmouseup事件 2.注意事项: 要防止div移出可视框,要限 ...

  6. C++ 虹软人脸识别 ArcFace 2.0 Demo

    环境配置: 开发环境:Win10 + VS 2013 SDK版本:ArcFace v2.0 OpenCV版本:2.4.9 平台配置: x64.x86下Release.Debug SDK 下载地址:戳这 ...

  7. 从零学习Fluter(三):Flutter的路由跳转以及state的生命周期

    今天继续研究Flutter,我是在flutter1.0发布后,才玩flutter的,发现在此之前,许多人已经先发制人,玩起了flutter,不知不觉中,我已经被别人摔在了起跑线上,玩过flutter后 ...

  8. whistle

    whistle介绍 whistle是基于Node的跨平台web调试代理工具, 主要查看, 修改HTTP, HTTPS, Websocket的请求,响应, 也可以作为HTTP代理服务器使用 (文档)[h ...

  9. 通过百度地图API--获取全国地图的经纬度

    因为要做一个前端画图需要经纬度,一个个的查询过麻烦,最终弄出这个,以备后查! import threading , time import requests from decimal import D ...

  10. HO6 Condo Insurance Policy

    The HO6 insurance Policy is the most common type of policy used to insure town homes and condos in t ...