题意:\(\sum_{i=1}^n\sum_{j=1}^n\sum_{k=1}^n\frac{\phi(i)*\phi(j^2)*\phi(k^3)}{\phi(i)*\phi(j)*\phi(k)}\phi(gcd(i,j,k))\),1e4组询问,每次给\(n(1<=n<=1e7)\).

题解:由\(\phi(x)\)的性质\(x=p_1^{k_1}*p_2^{k_2}*...*p_n^{k_n}\),\(\phi(x)=p_1^{k_1-1}*(p_1-1)*p_2^{k_2-1}*(p_2-1)...*p_n^{k_n-1}*(p_n-1)\),\(\phi(x^2)=p_1^{2*k_1-1}*(p_1-1)*p_2^{2*k_2-1}*(p_2-1)...*p_n^{2*k_n-1}*(p_n-1)\).

\(\phi(x^2)=x*\phi(x)\).

\(\phi(x^3)=x^2*\phi(x)\).

原式化为:

\(\sum_{i=1}^n\sum_{j=1}^n\sum_{k=1}^nj*k^2*\phi(gcd(i,j,k))\)

\(=\sum_{d=1}^n\sum_{i=1}^n\sum_{j=1}^n\sum_{k=1}^nj*k^2*\phi(d)[gcd(i,j,k)==d]\)

\(=\sum_{d=1}^n\phi(d)\sum_{i=1}^n\sum_{j=1}^n\sum_{k=1}^nj*k^2*[gcd(i,j,k)==d]\)

设\(f(n)=\sum_{i=1}^n\sum_{j=1}^n\sum_{k=1}^nj*k^2*[gcd(i,j,k)==d]\).

\(F(n)=\sum_{i=1}^n\sum_{j=1}^n\sum_{k=1}^nj*k^2*[d|gcd(i,j,k)]\)

\(F(n)=d^3*\sum_{i=1}^{\left \lfloor \frac{n}{d} \right \rfloor}\sum_{j=1}^{\left \lfloor \frac{n}{d} \right \rfloor}j\sum_{k=1}^{\left \lfloor \frac{n}{d} \right \rfloor}k^2\)

\(F(n)=d^3*\frac{{\left \lfloor \frac{n}{d} \right \rfloor}^3*({\left \lfloor \frac{n}{d} \right \rfloor}+1)^2*({\left \lfloor \frac{n}{d} \right \rfloor}*2+1)}{12}\)

由莫比乌斯反演

\(f(n)=\sum_{x=1}^{{\left \lfloor \frac{n}{d} \right \rfloor}}\mu(x)*(d*x)^3*\frac{{\left \lfloor \frac{n}{d*x} \right \rfloor}^3*({\left \lfloor \frac{n}{d*x} \right \rfloor}+1)^2*({\left \lfloor \frac{n}{d*x} \right \rfloor}*2+1)}{12}\)

原式化为:

\(\sum_{d=1}^n\phi(d)*\sum_{x=1}^{{\left \lfloor \frac{n}{d} \right \rfloor}}\mu(x)*(d*x)^3*\frac{{\left \lfloor \frac{n}{d*x} \right \rfloor}^3*({\left \lfloor \frac{n}{d*x} \right \rfloor}+1)^2*({\left \lfloor \frac{n}{d*x} \right \rfloor}*2+1)}{12}\)

\(=\sum_{t=1}(t)^3*\frac{{\left \lfloor \frac{n}{t} \right \rfloor}^3*({\left \lfloor \frac{n}{t} \right \rfloor}+1)^2*({\left \lfloor \frac{n}{t} \right \rfloor}*2+1)}{12}\sum_{d|t}\phi(d)*\mu(\frac{t}{d})\)

假设\(g(n)=\sum_{d|n}\phi(d)*\mu(\frac{n}{d})\),g是积性函数,考虑线筛求g,只需考虑递推求\(g(p^k)\)

\(g(p^k)=\sum_{i=0}^k\phi(p^i)*\mu(p^{k-i})\)

由莫比乌斯函数性质\(g(p^k)=phi(p^k)*\mu(1)+phi(p^{k-1})*\mu(p)=\phi(p^k)-\phi(p^{k-1})\)

当\(k==1\)时\(g(p)=p-2\).

当\(k!=1\)时\(g(p^k)=p^{k-2}*(p-1)^2\)

线筛求g,之后和\(i^3\)一起求前缀和,然后每次询问分块即可

注意模数是\(2^{30}\)没法直接求12的逆元,要先除去4再求3和模数的逆元(扩展gcd)

//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1073741824
#define ld long double
//#define C 0.5772156649
//#define ls l,m,rt<<1
//#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define ull unsigned long long
//#define base 1000000000000000000
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;} using namespace std; const ull ba=233;
const db eps=1e-5;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=10000000+10,maxn=1000000+10,inf=0x3f3f3f3f; ll f[N];
int prime[N],cnt,num[N];
bool mark[N];
void init()
{
f[1]=1;
for(int i=2;i<N;i++)
{
if(!mark[i])prime[++cnt]=i,f[i]=i-2,num[i]=1;
for(int j=1;j<=cnt&&i*prime[j]<N;j++)
{
mark[i*prime[j]]=1;
if(i%prime[j]==0)
{
num[i*prime[j]]=num[i]+1;
if(num[i]==1)
{
if(prime[j]==2)f[i*prime[j]]=f[i/prime[j]];
else f[i*prime[j]]=f[i]/(prime[j]-2)*(prime[j]-1)*(prime[j]-1);
}
else f[i*prime[j]]=f[i]*prime[j];
break;
}
f[i*prime[j]]=f[i]*f[prime[j]];
num[i*prime[j]]=1;
}
}
for(int i=1;i<N;i++)
f[i]=(f[i-1]+f[i]*i%mod*i%mod*i%mod)%mod;
}
int main()
{
ll gan=715827883;
init();
int T;scanf("%d",&T);
while(T--)
{
int n;scanf("%d",&n);
ll ans=0;
for(int i=1,j;i<=n;i=j+1)
{
j=n/(n/i);
ll te=n/i,pp=(f[j]-f[i-1]+mod)%mod;
if(te%2==0)
{
add(ans,(te/2)*(te/2)%mod*te%mod*(te+1)%mod*(te+1)%mod*(te*2+1)%mod*pp%mod*gan%mod);
}
else
{
add(ans,te*te%mod*te%mod*((te+1)/2)%mod*((te+1)/2)%mod*(te*2+1)%mod*pp%mod*gan%mod);
}
}
printf("%lld\n",ans);
}
return 0;
}
/******************** ********************/

2019南昌网络赛G. tsy's number的更多相关文章

  1. 2019南昌网络赛I:Yukino With Subinterval(CDQ) (树状数组套主席树)

    题意:询问区间有多少个连续的段,而且这段的颜色在[L,R]才算贡献,每段贡献是1. 有单点修改和区间查询. 思路:46min交了第一发树套树,T了. 稍加优化多交几次就过了. 不难想到,除了L这个点, ...

  2. ACM-ICPC 2019南昌网络赛I题 Yukino With Subinterval

    ACM-ICPC 2019南昌网络赛I题 Yukino With Subinterval 题目大意:给一个长度为n,值域为[1, n]的序列{a},要求支持m次操作: 单点修改 1 pos val 询 ...

  3. ACM-ICPC 2019南昌网络赛F题 Megumi With String

    ACM-ICPC 南昌网络赛F题 Megumi With String 题目描述 给一个长度为\(l\)的字符串\(S\),和关于\(x\)的\(k\)次多项式\(G[x]\).当一个字符串\(str ...

  4. 2019南昌网络赛 hello 2019

    这道题和一道2017,2016的类似. A string t is called nice if a string “2017” occurs in t as a subsequence but a ...

  5. 2019南昌网络赛  I. Yukino With Subinterval 树状数组套线段树

    I. Yukino With Subinterval 题目链接: Problem Descripe Yukino has an array \(a_1, a_2 \cdots a_n\). As a ...

  6. 2019南昌网络赛 J Distance on the tree 主席树+lca

    题意 给一颗树,每条边有边权,每次询问\(u\)到\(v\)的路径中有多少边的边权小于等于\(k​\) 分析 在树的每个点上建\(1​\)到\(i​\)的权值线段树,查询的时候同时跑\(u,v,lca ...

  7. 2019 徐州网络赛 G Colorful String 回文树

    题目链接:https://nanti.jisuanke.com/t/41389 The value of a string sss is equal to the number of differen ...

  8. 2019南昌网络赛-I(单调栈+线段树)

    题目链接:https://nanti.jisuanke.com/t/38228 题意:定义一段区间的值为该区间的和×该区间的最小值,求给定数组的最大的区间值. 思路:比赛时还不会线段树,和队友在这题上 ...

  9. 2019南昌网络赛-M(二分)

    题目链接:https://nanti.jisuanke.com/t/38232 题意:给定字符串s(长度<=1e5),然后N组样例(N<=1e5),每组输入一个字符串t判断t是否为s的字串 ...

随机推荐

  1. windows10误删Administrator用户的家目录之后

    今天在玩Windows10的用户管理的时候,把Administrator用户给开启了,然后还用这个用户登录了系统. 结果就是,第一次登录的时候,闪过一条条初始化配置欢迎信息,Windows系统为Adm ...

  2. CentOS 7 搭建Squid代理服务器

    Squid安装 官方地址:http://www.squid-cache.org/ [root@DaMoWang ~]# -r6d8f397.tar.gz [root@DaMoWang ~]# -r6d ...

  3. Openstack oslo.config【一】

    OpenStack的项目貌似越来越多了,在Grizzly版之前,每个项目都得实现一套处理配置文件的代码.在每个项目的源码中基本上都可以找到openstack/common/cfg.py,inipars ...

  4. 日常开发工作常用linux命令

    :wq 保存退出 :q! 强制退出 vi 查看 vim 编辑 rpm -qa|grep jdk 命令查看当前的jdk情况 yum -y remove java java-1.7.0-openjdk* ...

  5. 易爆物D305

    分析:典型的并查集,每一个物品合一看成一个独立的顶点,则一个简单化合物就是一条边,如果两个顶点x,y联通则说明有危险,所以可以用一个并查集来维护图的联通分量集合,并查集的详解有一篇写的很易懂的博客并查 ...

  6. Mysql 导入文件提示 --secure-file-priv option 问题

    MYSQL导入数据出现:The MySQL server is running with the --secure-file-priv option so it cannot execute this ...

  7. 使用jconsole监控JVM内存

    首先声明:此篇博文分析的是JDK1.8. JVM内存区域总体分两类:heap区和非heap区.Jconsole中对内存划分为同样的结构,如下: heap区又分为:  - Eden Space(伊甸园) ...

  8. js获取url指定参数值

    function GetQueryString(name) { var reg = new RegExp("(^|&)" + name + "=([^&] ...

  9. JS 页面表格的操作

    var showObj = null;var arr = [ ['编号','姓名','性别','年龄','备注','操作'], ['1','lisi','nan','12','66666'], ['2 ...

  10. Java8-对map排序

    1.Java8对map按key排序 /** * @author : fengkun * @date : 19-3-10 * 内容 : Java8对map按key排序 */ public class S ...