Catalan卡特兰数入门
简介
卡特兰数是组合数学中的一种常见数列
它的前几项为:
1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670,129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452
公式
递归公式1
$f(n)=\sum_{i=0}^{n-1}f(i)*f(n-i-1)$
递归公式2
$f(n)=\frac{f(n-1)*(4*n-2)}{n+1}$
组合公式1
$f(n)=\frac{C_{2n}^n}{n+1}$
组合公式2,重要!重要!重要!
$f(n)=C_{2n}^n-C_{2*n}^{n-1}$
递推公式
$f[n]=\sum_{i=0}^{n-1}f[i]*f[n-i-1]$
一般在做题的时候,都是利用这个公式进行递推
证明
不会:stuck_out_tongue_closed_eyes:。(众人:那你在这瞎bb啥。:triumph:)
这个东西的证明我确实不会
不过我在这里教大家一种非常简单易懂的记忆方法,
记$f[n]$为卡特兰数的第$n$项
首先你要明白一件事情
一棵$n$个节点的二叉树的形态总数,就是卡特兰数的第$n$项
对于一棵二叉树,递归的考虑
一棵只有一个节点的二叉树只有一种形态
对于不是一个节点的二叉树,按照他的左右孩子进行讨论
设它的左孩子有$i$个节点,那么它的形态数为$f[i]$
那么它的右孩子有$n-i-1$个节点,那么它的形态数为$f[n-i-1]$
又因为每一个节点都可以作为根节点
所以不难得到递推式
$f[n]=\sum_{i=0}^{n-1}f[i]*f[n-i-1]$
例题
都是裸题我就不细讲了
洛谷P1722 矩阵 II
http://www.cnblogs.com/zwfymqz/p/7725346.html
洛谷P1044 栈
洛谷P1976 鸡蛋饼
http://www.cnblogs.com/zwfymqz/p/7725386.html
总结
卡特兰数是一种常见的数列
需要每一位选手掌握它的递推式
卡特兰数一般不会单独出现,往往会出现在一些题目的部分分中,如2017某省省选(具体忘记了。)
在考场上,要证明一个东西是卡特兰数是非常困难的
自己手玩点小数据,只要前几项吻合,那一般就是卡特兰数啦
Catalan卡特兰数入门的更多相关文章
- catalan卡特兰数
卡塔兰数是组合数学中一个常在各种计数问题中出现的数列.以比利时的数学家欧仁·查理·卡塔兰(1814–1894)命名.历史上,清代数学家明安图(1692年-1763年)在其<割圜密率捷法>最 ...
- 卡特兰(Catalan)数入门详解
也许更好的阅读体验 基本概念 介绍 学卡特兰数我觉得可能比组合数要难一点,因为组合数可以很明确的告诉你那个公式是在干什么,而卡特兰数却像是在用大量例子来解释什么时卡特兰数 这里,我对卡特兰数做一点自己 ...
- 卡特兰数(Catalan)
卡特兰数又称卡塔兰数,英文名Catalan number,是组合数学中一个常出现在各种计数问题中出现的数列.由以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名,其前几项为 : 1, 2, ...
- 卡特兰数(Catalan Number) 算法、数论 组合~
Catalan number,卡特兰数又称卡塔兰数,是组合数学中一个常出现在各种计数问题中出现的数列.以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. 卡特兰数的前几个数 前20项为( ...
- 卡特兰数 Catalan数 ( ACM 数论 组合 )
卡特兰数 Catalan数 ( ACM 数论 组合 ) Posted on 2010-08-07 21:51 MiYu 阅读(13170) 评论(1) 编辑 收藏 引用 所属分类: ACM ( 数论 ...
- 卡特兰数(Catalan)简介
Catalan序列是一个整数序列,其通项公式是 h(n)=C(2n,n)/(n+1) (n=0,1,2,...) 其前几项为 : 1, 1, 2, 5, 14, 42, 132, 429, 1430, ...
- catalan 数——卡特兰数(转)
Catalan数——卡特兰数 今天阿里淘宝笔试中碰到两道组合数学题,感觉非常亲切,但是笔试中失踪推导不出来后来查了下,原来是Catalan数.悲剧啊,现在整理一下 一.Catalan数的定义令h(1) ...
- Catalan Number 卡特兰数
内容部分来自以下博客: Cyberspace_TechNode 邀月独斟 一个大叔 表示感谢! Catalan数的引入: 一个长度为2N的序列,里面有N个+1,N个-1 它的任意前缀和均非负,给定N, ...
- Catalan数——卡特兰数
一.Catalan数的定义 令h(0)=1,h(1)=1,Catalan数满足递归式:h(n) = h(0)*h(n-1) + h(1)*h(n-2) + ... + h(n-1)*h(0) (n& ...
随机推荐
- C语言面试题分类->排序算法
1.选择排序. 每次将最小的数,与剩余数做比较.找到更小的,做交换. 时间复杂度:O(n²) 空间复杂度:O(1) 优缺点:耗时但内存空间使用小. void selectSort(int *p,int ...
- vue父子组件及非父子组件通信
1.父组件传递数据给子组件 父组件数据如何传递给子组件呢?可以通过props属性来实现 父组件: <parent> <child :child-msg="msg" ...
- [Swift]LeetCode657. 机器人能否返回原点 | Robot Return to Origin
There is a robot starting at position (0, 0), the origin, on a 2D plane. Given a sequence of its mov ...
- [Swift]LeetCode728. 自除数 | Self Dividing Numbers
A self-dividing number is a number that is divisible by every digit it contains. For example, 128 is ...
- [Swift]LeetCode869. 重新排序得到 2 的幂 | Reordered Power of 2
Starting with a positive integer N, we reorder the digits in any order (including the original order ...
- layui动态设置checkbox选中状态
今天在使用jquery动态设置layui的checkbox元素的选中状态时始终只能取消选中,却不能重新勾选,点击勾选则没有问题,代码如下 if (value == "true") ...
- 主机名变成bogon?连不上mysql?你需要看下这篇文章
通过navicat for mysql操作部署在虚拟机centos里面的mysql数据库时候总是出现类似于下面的提示信息: Can't connct to MySQL server on '*.*.* ...
- UE4 打包C++项目到win32平台报错 could not find mspdbcore.dll
解决方法: 将Visual Studio中相应系统(如32位对应x86.64位对应x64)下的 ms.*.dll 等一系列文件拷贝到 C:\Windows\System32\ 路径下.踩坑:不能只拷贝 ...
- Kibana安全特性之权限控制
1. 前言 在之前的例子中,我们都是直接输入地址访问的,系统也没有提示我们要输入用户名密码.但是,在实际使用过程中不大可能所有人都是超级管理员可以做任何操作,一定是有权限控制的,这里我们借助X-Pa ...
- windows git 上传
1.打开git.bash 2. 告诉要传的git的用户名字 和邮箱地址 git config --global user.name "CardLove" git config -- ...