MapReduce简介

在Hadoop MapReduce中,框架会确保reduce收到的输入数据是根据key排序过的。数据从Mapper输出到Reducer接收,是一个很复杂的过程,框架处理了所有问题,并提供了很多配置项及扩展点。一个MapReduce的大致数据流如下图:

更详细的MapReduce介绍参考Hadoop MapReduce原理与实例

Mapper的输出排序、然后传送到Reducer的过程,称为shuffle。本文详细地解析shuffle过程,深入理解这个过程对于MapReduce调优至关重要,某种程度上说,shuffle过程是MapReduce的核心内容。

Mapper端

当map函数通过context.write()开始输出数据时,不是单纯地将数据写入到磁盘。为了性能,map输出的数据会写入到缓冲区,并进行预排序的一些工作,整个过程如下图:

环形Buffer数据结构

每一个map任务有一个环形Buffer,map将输出写入到这个Buffer。环形Buffer是内存中的一种首尾相连的数据结构,专门用来存储Key-Value格式的数据:

Hadoop中,环形缓冲其实就是一个字节数组:

// MapTask.java
private byte[] kvbuffer; // main output buffer kvbuffer = new byte[maxMemUsage - recordCapacity];
  • 1
  • 2
  • 3
  • 4

kvbuffer包含数据区和索引区,这两个区是相邻不重叠的区域,用一个分界点来标识。分界点不是永恒不变的,每次Spill之后都会更新一次。初始分界点为0,数据存储方向为向上增长,索引存储方向向下:

bufferindex一直往上增长,例如最初为0,写入一个int类型的key之后变为4,写入一个int类型的value之后变成8。

索引是对key-value在kvbuffer中的索引,是个四元组,占用四个Int长度,包括:

  • value的起始位置
  • key的起始位置
  • partition值
  • value的长度
private static final int VALSTART = 0;    // val offset in acct
private static final int KEYSTART = 1; // key offset in acct
private static final int PARTITION = 2; // partition offset in acct
private static final int VALLEN = 3; // length of value
private static final int NMETA = 4; // num meta ints
private static final int METASIZE = NMETA * 4; // size in bytes
// write accounting info
kvmeta.put(kvindex + PARTITION, partition);
kvmeta.put(kvindex + KEYSTART, keystart);
kvmeta.put(kvindex + VALSTART, valstart);
kvmeta.put(kvindex + VALLEN, distanceTo(valstart, valend));
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

kvmeta的存放指针kvindex每次都是向下跳四个“格子”,然后再向上一个格子一个格子地填充四元组的数据。比如kvindex初始位置是-4,当第一个key-value写完之后,(kvindex+0)的位置存放value的起始位置、(kvindex+1)的位置存放key的起始位置、(kvindex+2)的位置存放partition的值、(kvindex+3)的位置存放value的长度,然后kvindex跳到-8位置。

缓冲区的大小默认为100M,但是可以通过mapreduce.task.io.sort.mb这个属性来配置。

Spill

map将输出不断写入到这个缓冲区中,当缓冲区使用量达到一定比例之后,一个后台线程开始把缓冲区的数据写入磁盘,这个写入的过程叫spill。开始spill的Buffer比例默认为0.80,可以通过mapreduce.map.sort.spill.percent配置。在后台线程写入的同时,map继续将输出写入这个环形缓冲,如果缓冲池写满了,map会阻塞直到spill过程完成,而不会覆盖缓冲池中的已有的数据。

在写入之前,后台线程把数据按照他们将送往的reducer进行划分,通过调用PartitionergetPartition()方法就能知道该输出要送往哪个Reducer。默认的Partitioner使用Hash算法来分区,即通过key.hashCode() mode R来计算,R为Reducer的个数。getPartition返回Partition事实上是个整数,例如有10个Reducer,则返回0-9的整数,每个Reducer会对应到一个Partition。map输出的键值对,与partition一起存在缓冲中(即前面提到的kvmeta中)。假设作业有2个reduce任务,则数据在内存中被划分为reduce1和reduce2:

并且针对每部分数据,使用快速排序算法(QuickSort)对key排序。

如果设置了Combiner,则在排序的结果上运行combine。

排序后的数据被写入到mapreduce.cluster.local.dir配置的目录中的其中一个,使用round robin fashion的方式轮流。注意写入的是本地文件目录,而不是HDFS。Spill文件名像sipll0.out,spill1.out等。

不同Partition的数据都放在同一个文件,通过索引来区分partition的边界和起始位置。索引是一个三元组结构,包括起始位置、数据长度、压缩后的数据长度,对应IndexRecord类:

public class IndexRecord {
public long startOffset;
public long rawLength;
public long partLength; public IndexRecord() { } public IndexRecord(long startOffset, long rawLength, long partLength) {
this.startOffset = startOffset;
this.rawLength = rawLength;
this.partLength = partLength;
}
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

每个mapper也有对应的一个索引环形Buffer,默认为1KB,可以通过mapreduce.task.index.cache.limit.bytes来配置,索引如果足够小则存在内存中,如果内存放不下,需要写入磁盘。 
Spill文件索引名称类似这样 spill110.out.index, spill111.out.index。

Spill文件的索引事实上是 org.apache.hadoop.mapred.SpillRecord的一个数组,每个Map任务(源码中的MapTask.java类)维护一个这样的列表:

final ArrayList<SpillRecord> indexCacheList = new ArrayList<SpillRecord>();
  • 1

创建一个SpillRecord时,会分配(Number_Of_Reducers * 24)Bytes缓冲:

public SpillRecord(int numPartitions) {
buf = ByteBuffer.allocate(
numPartitions * MapTask.MAP_OUTPUT_INDEX_RECORD_LENGTH);
entries = buf.asLongBuffer();
}
  • 1
  • 2
  • 3
  • 4
  • 5

numPartitions是Partition的个数,其实也就是Reducer的个数:

public static final int MAP_OUTPUT_INDEX_RECORD_LENGTH = 24;

// ---

partitions = jobContext.getNumReduceTasks();
final SpillRecord spillRec = new SpillRecord(partitions);
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

默认的索引缓冲为1KB,即1024*1024 Bytes,假设有2个Reducer,则每个Spill文件的索引大小为2*24=48 Bytes,当Spill文件超过21845.3时,索引文件就需要写入磁盘。

索引及spill文件如下图示意:

Spill的过程至少需要运行一次,因为Mapper的输出结果必须要写入磁盘,供Reducer进一步处理。

合并Spill文件

在整个map任务中,一旦缓冲达到设定的阈值,就会触发spill操作,写入spill文件到磁盘,因此最后可能有多个spill文件。在map任务结束之前,这些文件会根据情况合并到一个大的分区的、排序的文件中,排序是在内存排序的基础上进行全局排序。下图是合并过程的简单示意:

相对应的索引文件也会被合并,以便在Reducer请求对应Partition的数据的时候能够快速读取。

另外,如果spill文件数量大于mapreduce.map.combiner.minspills配置的数,则在合并文件写入之前,会再次运行combiner。如果spill文件数量太少,运行combiner的收益可能小于调用的代价。

mapreduce.task.io.sort.factor属性配置每次最多合并多少个文件,默认为10,即一次最多合并10个spill文件。最后,多轮合并之后,所有的输出文件被合并为唯一一个大文件,以及相应的索引文件(可能只在内存中存在)。

压缩

在数据量大的时候,对map输出进行压缩通常是个好主意。要启用压缩,将mapreduce.map.output.compress设为true,并使用mapreduce.map.output.compress.codec设置使用的压缩算法。

通过HTTP暴露输出结果

map输出数据完成之后,通过运行一个HTTP Server暴露出来,供reduce端获取。用来相应reduce数据请求的线程数量可以配置,默认情况下为机器内核数量的两倍,如需自己配置,通过mapreduce.shuffle.max.threads属性来配置,注意该配置是针对NodeManager配置的,而不是每个作业配置。

同时,Map任务完成后,也会通知Application Master,以便Reducer能够及时来拉取数据。

通过缓冲、划分(partition)、排序、combiner、合并、压缩等过程之后,map端的工作就算完毕:

Reducer端

各个map任务运行完之后,输出写入运行任务的机器磁盘中。Reducer需要从各map任务中提取自己的那一部分数据(对应的partition)。每个map任务的完成时间可能是不一样的,reduce任务在map任务结束之后会尽快取走输出结果,这个阶段叫copy。 
Reducer是如何知道要去哪些机器去数据呢?一旦map任务完成之后,就会通过常规心跳通知应用程序的Application Master。reduce的一个线程会周期性地向master询问,直到提取完所有数据(如何知道提取完?)。

数据被reduce提走之后,map机器不会立刻删除数据,这是为了预防reduce任务失败需要重做。因此map输出数据是在整个作业完成之后才被删除掉的。

reduce维护几个copier线程,并行地从map任务机器提取数据。默认情况下有5个copy线程,可以通过mapreduce.reduce.shuffle.parallelcopies配置。

如果map输出的数据足够小,则会被拷贝到reduce任务的JVM内存中。mapreduce.reduce.shuffle.input.buffer.percent配置JVM堆内存的多少比例可以用于存放map任务的输出结果。如果数据太大容不下,则被拷贝到reduce的机器磁盘上。

内存中合并

当缓冲中数据达到配置的阈值时,这些数据在内存中被合并、写入机器磁盘。阈值有2种配置方式:

  • 配置内存比例: 前面提到reduce JVM堆内存的一部分用于存放来自map任务的输入,在这基础之上配置一个开始合并数据的比例。假设用于存放map输出的内存为500M,mapreduce.reduce.shuffle.merger.percent配置为0.80,则当内存中的数据达到400M的时候,会触发合并写入。
  • 配置map输出数量: 通过mapreduce.reduce.merge.inmem.threshold配置。

在合并的过程中,会对被合并的文件做全局的排序。如果作业配置了Combiner,则会运行combine函数,减少写入磁盘的数据量。

Copy过程中磁盘合并

在copy过来的数据不断写入磁盘的过程中,一个后台线程会把这些文件合并为更大的、有序的文件。如果map的输出结果进行了压缩,则在合并过程中,需要在内存中解压后才能给进行合并。这里的合并只是为了减少最终合并的工作量,也就是在map输出还在拷贝时,就开始进行一部分合并工作。合并的过程一样会进行全局排序。

最终磁盘中合并

当所有map输出都拷贝完毕之后,所有数据被最后合并成一个排序的文件,作为reduce任务的输入。这个合并过程是一轮一轮进行的,最后一轮的合并结果直接推送给reduce作为输入,节省了磁盘操作的一个来回。最后(所以map输出都拷贝到reduce之后)进行合并的map输出可能来自合并后写入磁盘的文件,也可能来及内存缓冲,在最后写入内存的map输出可能没有达到阈值触发合并,所以还留在内存中。

每一轮合并并不一定合并平均数量的文件数,指导原则是使用整个合并过程中写入磁盘的数据量最小,为了达到这个目的,则需要最终的一轮合并中合并尽可能多的数据,因为最后一轮的数据直接作为reduce的输入,无需写入磁盘再读出。因此我们让最终的一轮合并的文件数达到最大,即合并因子的值,通过mapreduce.task.io.sort.factor来配置。

假设现在有50个map输出文件,合并因子配置为10,则需要5轮的合并。最终的一轮确保合并10个文件,其中包括4个来自前4轮的合并结果,因此原始的50个中,再留出6个给最终一轮。所以最后的5轮合并可能情况如下:

前4轮合并后的数据都是写入到磁盘中的,注意到最后的2格颜色不一样,是为了标明这些数据可能直接来自于内存。

MemToMem合并

除了内存中合并和磁盘中合并外,Hadoop还定义了一种MemToMem合并,这种合并将内存中的map输出合并,然后再写入内存。这种合并默认关闭,可以通过reduce.merge.memtomem.enabled打开,当map输出文件达到reduce.merge.memtomem.threshold时,触发这种合并。

最后一次合并后传递给reduce方法

合并后的文件作为输入传递给Reducer,Reducer针对每个key及其排序的数据调用reduce函数。产生的reduce输出一般写入到HDFS,reduce输出的文件第一个副本写入到当前运行reduce的机器,其他副本选址原则按照常规的HDFS数据写入原则来进行,详细信息请参考这里

通过从map机器提取结果,合并,combine之后,传递给reduce完成最后工作,整个过程也就差不多完成。最后再感受一下下面这张图:

性能调优

如果能够根据情况对shuffle过程进行调优,对于提供MapReduce性能很有帮助。相关的参数配置列在后面的表格中。

一个通用的原则是给shuffle过程分配尽可能大的内存,当然你需要确保map和reduce有足够的内存来运行业务逻辑。因此在实现Mapper和Reducer时,应该尽量减少内存的使用,例如避免在Map中不断地叠加。

运行map和reduce任务的JVM,内存通过mapred.child.java.opts属性来设置,尽可能设大内存。容器的内存大小通过mapreduce.map.memory.mbmapreduce.reduce.memory.mb来设置,默认都是1024M。

map优化

在map端,避免写入多个spill文件可能达到最好的性能,一个spill文件是最好的。通过估计map的输出大小,设置合理的mapreduce.task.io.sort.*属性,使得spill文件数量最小。例如尽可能调大mapreduce.task.io.sort.mb

map端相关的属性如下表:

属性名 值类型 默认值 说明
mapreduce.task.io.sort.mb int 100 用于map输出排序的内存大小
mapreduce.map.sort.spill.percent float 0.80 开始spill的缓冲池阈值
mapreduce.task.io.sort.factor int 10 合并文件数最大值,与reduce共用
mapreduce.map.combine.minspills int 3 运行combiner的最低spill文件数
mapreduce.map.out.compress boolean false 输出是否压缩
mapreduce.map.out.compress 类名 DefaultCodec 压缩算法
mapreduce.shuffle.max.threads int 0 服务于reduce提取结果的线程数量

reduce优化

在reduce端,如果能够让所有数据都保存在内存中,可以达到最佳的性能。通常情况下,内存都保留给reduce函数,但是如果reduce函数对内存需求不是很高,将mapreduce.reduce.merge.inmem.threshold(触发合并的map输出文件数)设为0,mapreduce.reduce.input.buffer.percent(用于保存map输出文件的堆内存比例)设为1.0,可以达到很好的性能提升。在2008年的TB级别数据排序性能测试中,Hadoop就是通过将reduce的中间数据都保存在内存中胜利的。

reduce端相关属性:

属性名 值类型 默认值 说明
mapreduce.reduce.shuffle.parallelcopies int 5 提取map输出的copier线程数
mapreduce.reduce.shuffle.maxfetchfailures int 10 提取map输出最大尝试次数,超出后报错
mapreduce.task.io.sort.factor int 10 合并文件数最大值,与map共用
mapreduce.reduce.shuffle.input.buffer.percent float 0.70 copy阶段用于保存map输出的堆内存比例
mapreduce.reduce.shuffle.merge.percent float 0.66 开始spill的缓冲池比例阈值
mapreduce.reduce.shuffle.inmem.threshold int 1000 开始spill的map输出文件数阈值,小于等于0表示没有阈值,此时只由缓冲池比例来控制
mapreduce.reduce.input.buffer.percent float 0.0 reduce函数开始运行时,内存中的map输出所占的堆内存比例不得高于这个值,默认情况内存都用于reduce函数,也就是map输出都写入到磁盘

通用优化

Hadoop默认使用4KB作为缓冲,这个算是很小的,可以通过io.file.buffer.size来调高缓冲池大小。

参考

MapReduce shuffle过程剖析及调优的更多相关文章

  1. MapReduce Shuffle过程

    MapReduce Shuffle 过程详解 一.MapReduce Shuffle过程 1. Map Shuffle过程 2. Reduce Shuffle过程 二.Map Shuffle过程 1. ...

  2. 彻底理解MapReduce shuffle过程原理

    彻底理解MapReduce shuffle过程原理 MapReduce的Shuffle过程介绍 Shuffle的本义是洗牌.混洗,把一组有一定规则的数据尽量转换成一组无规则的数据,越随机越好.MapR ...

  3. Spark Shuffle数据处理过程与部分调优(源码阅读七)

    shuffle...相当重要,为什么咩,因为shuffle的性能优劣直接决定了整个计算引擎的性能和吞吐量.相比于Hadoop的MapReduce,可以看到Spark提供多种计算结果处理方式,对shuf ...

  4. MapReduce:Shuffle过程的流程

    Shuffle过程是MapReduce的核心,Shuffle描述着数据从map task输出到reduce task输入的这段过程. 1.map端

  5. Jvm原理剖析与调优之内存结构

    一些不得不说的概念 JVM JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的.Java虚拟机包括一套字节码指令集.一组寄存器.一个栈.一个 ...

  6. 2.27 MapReduce Shuffle过程如何在Job中进行设置

    一.shuffle过程 总的来说: *分区 partitioner *排序 sort *copy (用户无法干涉) 拷贝 *分组 group 可设置 *压缩 compress *combiner ma ...

  7. [Spark性能调优] 第二章:彻底解密Spark的HashShuffle

    本課主題 Shuffle 是分布式系统的天敌 Spark HashShuffle介绍 Spark Consolidated HashShuffle介绍 Shuffle 是如何成为 Spark 性能杀手 ...

  8. 【原】Learning Spark (Python版) 学习笔记(三)----工作原理、调优与Spark SQL

    周末的任务是更新Learning Spark系列第三篇,以为自己写不完了,但为了改正拖延症,还是得完成给自己定的任务啊 = =.这三章主要讲Spark的运行过程(本地+集群),性能调优以及Spark ...

  9. BEA WebLogic平台下J2EE调优攻略--转载

    BEA WebLogic平台下J2EE调优攻略   2008-06-25 作者:周海根 出处:网络   前 言 随着近来J2EE软件广泛地应用于各行各业,系统调优也越来越引起软件开发者和应用服务器提供 ...

随机推荐

  1. asp.net core 系列 2 启动Startup类介绍

    一.Startup类 ASP.NET Core 应用是一个控制台应用,它在其 Program.Main 方法中创建 Web 服务器.其中Main方法是应用的托管入口点,Main 方法调用 WebHos ...

  2. Java基础3:深入理解String及包装类

    更多内容请关注微信公众号[Java技术江湖] 这是一位阿里 Java 工程师的技术小站,作者黄小斜,专注 Java 相关技术:SSM.SpringBoot.MySQL.分布式.中间件.集群.Linux ...

  3. ELK-安装logstash

    注意:在下载tar包的时候需要注意下安装的es版本号,按照官网的说明版本是对应一致的. $ wget https://artifacts.elastic.co/downloads/logstash/l ...

  4. .NET快速信息化系统开发框架 V3.2 -> WinForm“组织机构管理”界面组织机构权限管理采用新的界面,操作权限按模块进行展示

    对于某些大型的企业.信息系统,涉及的组织机构较多,模块多.操作权限也多,对用户或角色一一设置模块.操作权限等比较繁琐.我们可以直接对某一组织机构进行权限的设置,这样设置后,同一组织机构的用户就可以拥有 ...

  5. 痞子衡嵌入式:飞思卡尔i.MX RT系列MCU启动那些事(8)- 从Raw NAND启动

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是飞思卡尔i.MX RT系列MCU的Raw NAND启动. 前面铺垫了七篇启动系列文章,终于该讲具体Boot Device了,我们知道i. ...

  6. CSS中层叠和CSS的7阶层叠水平(上篇)

    今天搜索资料时,忽然发现了以前没注意的一个知识点,所以拖过来搞一搞,这个知识点叫做CSS的7阶层叠水平 在说这个知识之前,我们必须要先了解一个东西以便于我们更好的理解CSS的7阶层叠水平 这个东西就是 ...

  7. ubuntu所有php扩展php-7.0扩展列表

    sudo apt-get install php7.0-bcmath sudo apt-get install php7.0-bz2 sudo apt-get install php7.0-calen ...

  8. 【前端】js中数组对象根据内容查找符合的第一个对象

    今天在写一个混合开发版的app,其中一个功能是扫描快递单号,客户要求不能扫描重复的快递单号!所有就验证查出. 首先实现思路就是: 1.定义一个全局数组变量:var nubList = []; 2.进入 ...

  9. __tostring()和__invoke()的用法

    PHP有很多内置的魔术方法,这里我们聊哈tostring和involk吧. __tostring()魔术方法 将一个对象当做一个字符串来使用时,会自动调用该方法,并且在该方法中,可以返回一定的字符串, ...

  10. 常用的Arrays类和二维数组以及二分法的介绍

    ---恢复内容开始--- 1.Array类 Array中包含了许多数组的常用操作,较为常见的有: (1)快速输出 import java.util.Arrays; public class Test{ ...