首先NDK文档中的Op.h头文件中已经有了相关概念的解释,摘录翻译如下:

      /*! \fn const OutputContext& Op::outputContext() const;
The current context that this Op is supposed to produce a picture
for. This includes the frame number, the view, etc.
*/
const OutputContext& outputContext() const { return outputContext_; }

即当前Op进行图像处理的一个实时环境,这个环境包括了帧数,视角(包括main视角,left视角,right视角,等)。

Op会对当前帧的画面进行处理,通过_validate()方法去确认图像相关信息,通过Knobs机制去读取工程文件中的属性参数并存储到knobs中,通过_requenst()去逐行请求图像信息,继而通过engine()方法综合现有数据进行图像处理。这是Op的一个简单的机制,一个Op实例只能处理一幅画面。那么Op该处理哪一帧图像呢?处理这一帧图像的哪一个视角呢(exr图像的header表中会记录视角信息)?这一切都由OutputContext机制决定。该机制会更早于Op属性实例化。OutputContext()机制启动后确定处理环境后才会实例化Op来进行下一步工作。

下面分析几个案例来解释这个机制:

默认的split_input()和OutputContext()方法是这样的:

virtual int split_input(int inputNo) const
{
return 1;
} virtual const OutputContext& inputContext(int n, int offset, OutputContext& oc) const
{
return outputContext();
}

一:

如果你希望input arrow在时间轴上的任何帧上都只进入第一帧(例如FrameHold),那么你需要这样重定义:

virtual const OutputContext& inputContext(int n, int offset, OutputContext& oc) const {
oc = outputContext();
oc.frame(1);
return oc;
}

第二行表示oc指向当前已经存在outputContext(),inputContext()方法中这样指认实际上表示inputContext()与outputContext()一致,即:输入哪一帧,处理哪一帧。第三行显式的为oc赋值1,表示无论何时只输入第一帧。第四行返回修改后的oc对象。

通过这种方式即可实现framehold的效果,无论时间轴怎样拖动,只显示指定的某一帧。

二:

如果你有一个Op想使用两个以上的输入帧来进行操作(比如FrameBlend),那你就需要重新定义split_input()。

virtual int split_input(int inputNo) const
{
if (inputNo == 0)
return 2;
return 1;
} virtual const OutputContext& inputContext(int n, int offset, OutputContext& oc) const
{
oc = outputContext();
if (inputNo == 0 && offset == 1)
oc.frame(oc.frame() + 1);
return oc;
}

第一个方法表示将第一个input arrow分出两个子input,每个input对应一个独立Op;第二个方法表示在第二个子input上输入下一帧的内容。即input(0,1)对应的Op处理input(0,0)应对Op处理帧的下一帧。这样就是在input(0)上同时处理生成两个Op来进行串帧处理了。inputContext(int n,int offset,OutputContext&oc)中n代表当前帧,offset代表当前input下的子input,oc表示当前outputContext()对象。

三:

virtual int split_input(int inputNo) const
{
return 11;
} virtual const OutputContext& inputContext(int n, int offset, OutputContext& oc) const
{
oc = outputContext();
oc.frame(oc.frame() - 5 + offset);
return oc;
}

在这个案例中通过split_input()方法为每个input定义了11个子inputs,目的是为每一个input都生成11个op,在每一帧都调用附近的11帧来生成图像。之后又定义了inputContext()方法,该方法继承了outputContext()方法,之后将当前帧向前偏移5帧,以oc.frame()-5为基准来添加offset,offset范围为0-10,这样就会生成oc.frame()-5到oc.frame()+5这个范围的input。每一帧的计算都会调用这个范围的input数据。通过这种结构,engine机制能够很容易的生成多帧混合图像。

但是这个机制有个缺陷,我们的原素材范围framerange假设为[1-100],经过这个机制之后framerange就变成[-4,105]了,这样会造成不必要的读写,于是nuke引入一个新的机制inputUIcontext().该机制同样继承自outputContext(),目的是在修复inputContext产生的帧数范围错误。我们只需要重新定义一下该函数即可:

virtual const OutputContext* inputUIContext(int n, OutputContext&) const
{
return &outputContext();
}

这样就可以将错误的范围重新指认回原来的应该的帧数范围了。

通过这OutputContext机制的这三个方法可以很轻松的解决时间线上多帧操作的问题,nuke的程序思路非常明确:

一个input对应一个op,多帧运算就实例化多个op,在engine方法中构建对应于多个input的row即可。

例如:

void TemporalMedian::engine ( int y, int x, int r,
ChannelMask channels, Row& row )
{
row.get(input0(), y, x, r, channels);
Row prevrow(x, r);
Row nextrow(x, r);
prevrow.get(input1(), y, x, r, channels);
nextrow.get(*input(2), y, x, r, channels);

该例子中就实例化了三个input,即:input0(),input1(),*input(2),每一个input的读写row实例即:row,preview,nextrow。

总结一下:

学习到这里Nuke的读写运算机制就很清晰了,剩下的就是算法移植了。希望自己的数学底子不要拖后腿。勤能补拙,再接再厉。

NDK学习笔记(四):OutputContext机制的更多相关文章

  1. NDK学习笔记(五)Reader机制

    针对每一种后缀名Nuke都提供了对应的模块.为了决定用哪个版本的reader或writer模块,Nuke会先解析文件后缀名再以此为依据调用相关模块. 以JPG为例: 该文件格式有两种后缀名:.jpg和 ...

  2. muduo网络库学习笔记(四) 通过eventfd实现的事件通知机制

    目录 muduo网络库学习笔记(四) 通过eventfd实现的事件通知机制 eventfd的使用 eventfd系统函数 使用示例 EventLoop对eventfd的封装 工作时序 runInLoo ...

  3. java学习笔记09--反射机制

    java学习笔记09--反射机制 什么是反射: 反射是java语言的一个特性,它允许程序在运行时来进行自我检查并且对内部的成员进行操作.例如它允许一个java的类获取他所有的成员变量和方法并且显示出来 ...

  4. 零拷贝详解 Java NIO学习笔记四(零拷贝详解)

    转 https://blog.csdn.net/u013096088/article/details/79122671 Java NIO学习笔记四(零拷贝详解) 2018年01月21日 20:20:5 ...

  5. MySql学习笔记四

    MySql学习笔记四 5.3.数据类型 数值型 整型 小数 定点数 浮点数 字符型 较短的文本:char, varchar 较长的文本:text, blob(较长的二进制数据) 日期型 原则:所选择类 ...

  6. ZooKeeper学习笔记四:使用ZooKeeper实现一个简单的分布式锁

    作者:Grey 原文地址: ZooKeeper学习笔记四:使用ZooKeeper实现一个简单的分布式锁 前置知识 完成ZooKeeper集群搭建以及熟悉ZooKeeperAPI基本使用 需求 当多个进 ...

  7. C#可扩展编程之MEF学习笔记(四):见证奇迹的时刻

    前面三篇讲了MEF的基础和基本到导入导出方法,下面就是见证MEF真正魅力所在的时刻.如果没有看过前面的文章,请到我的博客首页查看. 前面我们都是在一个项目中写了一个类来测试的,但实际开发中,我们往往要 ...

  8. IOS学习笔记(四)之UITextField和UITextView控件学习

    IOS学习笔记(四)之UITextField和UITextView控件学习(博客地址:http://blog.csdn.net/developer_jiangqq) Author:hmjiangqq ...

  9. java之jvm学习笔记四(安全管理器)

    java之jvm学习笔记四(安全管理器) 前面已经简述了java的安全模型的两个组成部分(类装载器,class文件校验器),接下来学习的是java安全模型的另外一个重要组成部分安全管理器. 安全管理器 ...

  10. Learning ROS for Robotics Programming Second Edition学习笔记(四) indigo devices

    中文译著已经出版,详情请参考:http://blog.csdn.net/ZhangRelay/article/category/6506865 Learning ROS for Robotics Pr ...

随机推荐

  1. parson json解析

    最近交互数据中用到JSON数据,很多年以前用过CJSON解析和生成JSON数据,貌似CJSON已经发展成为了libjson,本打算用libjson库,不过其提供的解析JSON方式采用了回调,是测试过程 ...

  2. Unity导航系统Navigation使用教程

    Unity开发VR之Vuforia 本文提供全流程,中文翻译. Chinar 坚持将简单的生活方式,带给世人!(拥有更好的阅读体验 -- 高分辨率用户请根据需求调整网页缩放比例) Chinar -- ...

  3. ZOJ 1002:Fire Net(DFS+回溯)

    Fire Net Time Limit: 2 Seconds      Memory Limit: 65536 KB Suppose that we have a square city with s ...

  4. C# 8.0、.NET Framework 4.8与NET Standard 2.1的一个说明

    C# 8.0..NET Framework 4.8与NET Standard 2.1的一个说明 https://blog.csdn.net/sD7O95O/article/details/846098 ...

  5. hdu4135 Co-prime 容斥原理

    Given a number N, you are asked to count the number of integers between A and B inclusive which are ...

  6. ionic1页面间传递参数的问题

    1.  $scope.routeinfo是我要传递的参数--到scheddulcontent这个页面去: $state.go( "scheddulcontent" , { 'rou ...

  7. Go Example--原子计数器

    package main import ( "fmt" "runtime" "sync/atomic" "time" ) ...

  8. zabbix使用企业微信发送告警信息

    用qq邮箱发送告警信息一点都不方便,看到网上说也可以使用微信发送告警信息,所以就试了一下. 首先先试着在虚拟主机上给微信发送信息. 我们需要注册企业微信,注册时有一个地方需要注意,就是注册时选择组织, ...

  9. Dynamic Code Evolution for Java dcevm 原理

    在hostswap dcevm中我们对Dynamic Code Evolution VM有了一个简单的了解,这篇文章将介绍Dynamic Code Evolution VM的实现原理. 有两个概念需要 ...

  10. The Guardian’s Migration from MongoDB to PostgreSQL on Amazon RDS

    转载一片mongodb 迁移pg 数据库的文章 原文:https://www.infoq.com/news/2019/01/guardian-mongodb-postgresql The Guardi ...