KNN分类算法(先验数据中就有类别之分,未知的数据会被归类为之前类别中的某一类!)

1、KNN介绍

K最近邻(k-Nearest Neighbor,KNN)分类算法是最简单的机器学习算法。

机器学习,算法本身不是最难的,最难的是:

1、数学建模:把业务中的特性抽象成向量的过程;

2、选取适合模型的数据样本。

这两个事都不是简单的事。算法反而是比较简单的事。

本质上,KNN算法就是用距离来衡量样本之间的相似度。

2、算法图示

◊ 从训练集中找到和新数据最接近的k条记录,然后根据多数类来决定新数据类别。

◊算法涉及3个主要因素:

1) 训练数据集

2) 距离或相似度的计算衡量

3) k的大小

◊算法描述

1) 已知两类“先验”数据,分别是蓝方块和红三角,他们分布在一个二维空间中

2) 有一个未知类别的数据(绿点),需要判断它是属于“蓝方块”还是“红三角”类

3) 考察离绿点最近的3个(或k个)数据点的类别,占多数的类别即为绿点判定类别

3、算法要点

3.1、计算步骤

1)算距离:给定测试对象,计算它与训练集中的每个对象的距离

2)找邻居:圈定距离最近的k个训练对象,作为测试对象的近邻

3)做分类:根据这k个近邻归属的主要类别,来对测试对象分类

3.2、相似度的度量

◊距离越近应该意味着这两个点属于一个分类的可能性越大。

但,距离不能代表一切,有些数据的相似度衡量并不适合用距离

◊相似度衡量方法:包括欧式距离夹角余弦等。

(简单应用中,一般使用欧氏距离,但对于文本分类来说,使用余弦(cosine)来计算相似度就比欧式(Euclidean)距离更合适

3.3、类别的判定

简单投票法:少数服从多数,近邻中哪个类别的点最多就分为该类。

加权投票法:根据距离的远近,对近邻的投票进行加权,距离越近则权重越大(权重为距离平方的倒数)

3.4、算法不足

  • 样本不平衡容易导致结果错误

◊如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。

◊改善方法:对此可以采用权值的方法(和该样本距离小的邻居权值大)来改进。

  • 计算量较大

◊因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。

◊改善方法:事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。

该方法比较适用于样本容量比较大的类域的分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。

4、KNN分类算法python实现(python2.7)

需求:

有以下先验数据,使用knn算法对未知类别数据分类

属性1

属性2

类别

1.0

0.9

A

1.0

1.0

A

0.1

0.2

B

0.0

0.1

B

未知类别数据

属性1

属性2

类别

1.2

1.0

?

0.1

0.3

?

python实现:

KNN.py脚本文件

 #!/usr/bin/python
# coding=utf-8
#########################################
# kNN: k Nearest Neighbors # 输入: newInput: (1xN)的待分类向量
# dataSet: (NxM)的训练数据集
# labels: 训练数据集的类别标签向量
# k: 近邻数 # 输出: 可能性最大的分类标签
######################################### from numpy import *
import operator # 创建一个数据集,包含2个类别共4个样本
def createDataSet():
# 生成一个矩阵,每行表示一个样本
group = array([[1.0, 0.9], [1.0, 1.0], [0.1, 0.2], [0.0, 0.1]])
# 4个样本分别所属的类别
labels = ['A', 'A', 'B', 'B']
return group, labels # KNN分类算法函数定义
def kNNClassify(newInput, dataSet, labels, k):
numSamples = dataSet.shape[0] # shape[0]表示行数 # # step 1: 计算距离[
# 假如:
# Newinput:[1,0,2]
# Dataset:
# [1,0,1]
# [2,1,3]
# [1,0,2]
# 计算过程即为:
# 1、求差
# [1,0,1] [1,0,2]
# [2,1,3] -- [1,0,2]
# [1,0,2] [1,0,2]
# =
# [0,0,-1]
# [1,1,1]
# [0,0,-1]
# 2、对差值平方
# [0,0,1]
# [1,1,1]
# [0,0,1]
# 3、将平方后的差值累加
# [1]
# [3]
# [1]
# 4、将上一步骤的值求开方,即得距离
# [1]
# [1.73]
# [1]
#
# ]
# tile(A, reps): 构造一个矩阵,通过A重复reps次得到
# the following copy numSamples rows for dataSet
diff = tile(newInput, (numSamples, 1)) - dataSet # 按元素求差值
squaredDiff = diff ** 2 # 将差值平方
squaredDist = sum(squaredDiff, axis = 1) # 按行累加
distance = squaredDist ** 0.5 # 将差值平方和求开方,即得距离 # # step 2: 对距离排序
# argsort() 返回排序后的索引值
sortedDistIndices = argsort(distance)
classCount = {} # define a dictionary (can be append element)
for i in xrange(k):
# # step 3: 选择k个最近邻
voteLabel = labels[sortedDistIndices[i]] # # step 4: 计算k个最近邻中各类别出现的次数
# when the key voteLabel is not in dictionary classCount, get()
# will return 0
classCount[voteLabel] = classCount.get(voteLabel, 0) + 1 # # step 5: 返回出现次数最多的类别标签
maxCount = 0
for key, value in classCount.items():
if value > maxCount:
maxCount = value
maxIndex = key return maxIndex

KNNTest.py测试文件

 #!/usr/bin/python
# coding=utf-8
import KNN
from numpy import *
# 生成数据集和类别标签
dataSet, labels = KNN.createDataSet()
# 定义一个未知类别的数据
testX = array([1.2, 1.0])
k = 3
# 调用分类函数对未知数据分类
outputLabel = KNN.kNNClassify(testX, dataSet, labels, 3)
print "Your input is:", testX, "and classified to class: ", outputLabel testX = array([0.1, 0.3])
outputLabel = KNN.kNNClassify(testX, dataSet, labels, 3)
print "Your input is:", testX, "and classified to class: ", outputLabel

运行结果:

KNN分类算法及python代码实现的更多相关文章

  1. 决策树分类算法及python代码实现案例

    决策树分类算法 1.概述 决策树(decision tree)——是一种被广泛使用的分类算法. 相比贝叶斯算法,决策树的优势在于构造过程不需要任何领域知识或参数设置 在实际应用中,对于探测式的知识发现 ...

  2. knn分类算法学习

    K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的 ...

  3. KNN分类算法实现手写数字识别

    需求: 利用一个手写数字“先验数据”集,使用knn算法来实现对手写数字的自动识别: 先验数据(训练数据)集: ♦数据维度比较大,样本数比较多. ♦ 数据集包括数字0-9的手写体. ♦每个数字大约有20 ...

  4. 机器学习---K最近邻(k-Nearest Neighbour,KNN)分类算法

    K最近邻(k-Nearest Neighbour,KNN)分类算法 1.K最近邻(k-Nearest Neighbour,KNN) K最近邻(k-Nearest Neighbour,KNN)分类算法, ...

  5. 数据关联分析 association analysis (Aprior算法,python代码)

    1基本概念 购物篮事务(market basket transaction),如下表,表中每一行对应一个事务,包含唯一标识TID,和购买的商品集合.本文介绍一种成为关联分析(association a ...

  6. 后端程序员之路 12、K最近邻(k-Nearest Neighbour,KNN)分类算法

    K最近邻(k-Nearest Neighbour,KNN)分类算法,是最简单的机器学习算法之一.由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重 ...

  7. KNN分类算法--python实现

    一.kNN算法分析 K最近邻(k-Nearest Neighbor,KNN)分类算法可以说是最简单的机器学习算法了.它采用测量不同特征值之间的距离方法进行分类.它的思想很简单:如果一个样本在特征空间中 ...

  8. 在Ignite中使用k-最近邻(k-NN)分类算法

    在本系列前面的文章中,简单介绍了一下Ignite的线性回归算法,下面会尝试另一个机器学习算法,即k-最近邻(k-NN)分类.该算法基于对象k个最近邻中最常见的类来对对象进行分类,可用于确定类成员的关系 ...

  9. KNN分类算法

    K邻近算法.K最近邻算法.KNN算法(k-Nearest Neighbour algorithm):是数据挖掘分类技术中最简单的方法之一 KNN的工作原理 所谓K最近邻,就是k个最近的邻居的意思,说的 ...

随机推荐

  1. 如何创建带有大纲和书签的交互式web报表

    交互式报表允许用户与之交互.例如,报表可以包含超链接.书签和大纲.通过点击大纲部分的标题,你可以将书签导航到报表中的所需位置.这样的报表经常用在产品目录中.(查看更多web报表教程) 让我们为Web创 ...

  2. 六道JavaScript测验题

    1.找出数字数组中最大的元素(使用Match.max函数) var a=[123,23432,345,3,34]; console.log(Math.max.apply(null,a)); 2.转化一 ...

  3. python安装办法

    先我们来安装python 1.首先进入网站下载:点击打开链接(或自己输入网址https://www.python.org/downloads/),进入之后,选择64位下载. 2.下载完成后如下图所示 ...

  4. 为什么还原innobackupex备份后查看到的Executed_Gtid_Set与xtrabackup_binlog_info不一致

    基本环境:官方社区版MySQL 5.7.19,innobackupex version 2.4.8 一.什么不一致 1.1.不一致 首先使用下面脚本来构建Executed_Gtid_Set与xtrab ...

  5. Java的IO流——(七)

    目录结构:

  6. SLAM学习资料汇总

    转自 http://www.cnblogs.com/wenhust/   书籍: 1.必读经典 Thrun S, Burgard W, Fox D. <Probabilistic robotic ...

  7. 基于XML搭建Dubbo项目

    (1).新建一个普通Maven项目,用于存放一些公共服务接口及公共的Bean等. 公共Bean: package cn.coreqi.entities; import java.io.Serializ ...

  8. vim学习、各类插件配置与安装【转】

    转自:https://www.cnblogs.com/forest-wow/p/6916531.html 1. vim学习 vim基础学习:根据网上流行基础文章<简明Vim练级攻略>,进阶 ...

  9. Linux内核中常见内存分配函数【转】

    转自:http://blog.csdn.net/wzhwho/article/details/4996510 1.      原理说明 Linux内核中采用了一种同时适用于32位和64位系统的内存分页 ...

  10. 半自动代码生成--方式C#

    寻找半自动代码生成方式基于C#的GUI或者其它: 1. (推荐)Millennials - A Custom Source Code Generator  https://www.codeprojec ...