机器学习笔记(2):线性回归-使用gluon
代码来自:https://zh.gluon.ai/chapter_supervised-learning/linear-regression-gluon.html
from mxnet import ndarray as nd
from mxnet import autograd
from mxnet import gluon num_inputs = 2
num_examples = 1000 true_w = [2, -3.4]
true_b = 4.2 X = nd.random_normal(shape=(num_examples, num_inputs)) #1000行,2列的数据集
y = true_w[0] * X[:, 0] + true_w[1] * X[:, 1] + true_b #已知答案的结果
y += .01 * nd.random_normal(shape=y.shape) #加入噪音 #1 随机读取10行数据
batch_size = 10
dataset = gluon.data.ArrayDataset(X, y)
data_iter = gluon.data.DataLoader(dataset, batch_size, shuffle=True) #2 定义回归模型
net = gluon.nn.Sequential()
net.add(gluon.nn.Dense(1)) #3 参数初始化
net.initialize() #4 损失函数
square_loss = gluon.loss.L2Loss() #5 指定训练方法
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.1}) #6 训练
epochs = 5
batch_size = 10
for e in range(epochs):
total_loss = 0
for data, label in data_iter:
with autograd.record():
output = net(data)
loss = square_loss(output, label)
loss.backward()
trainer.step(batch_size)
total_loss += nd.sum(loss).asscalar()
print("Epoch %d, average loss: %f" % (e, total_loss/num_examples)) #7 输出结果
dense = net[0]
print(true_w)
print(dense.weight.data())
print(true_b)
print(dense.bias.data())
相对上一篇纯手动的处理方式,用gluon后代码明显更精简了。
机器学习笔记(2):线性回归-使用gluon的更多相关文章
- coursera机器学习笔记-多元线性回归,normal equation
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补 ...
- Stanford机器学习笔记-1.线性回归
Content: 1. Linear Regression 1.1 Linear Regression with one variable 1.1.1 Gradient descent algorit ...
- Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)
title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...
- 机器学习笔记5-Tensorflow高级API之tf.estimator
前言 本文接着上一篇继续来聊Tensorflow的接口,上一篇中用较低层的接口实现了线性模型,本篇中将用更高级的API--tf.estimator来改写线性模型. 还记得之前的文章<机器学习笔记 ...
- Python机器学习笔记:sklearn库的学习
网上有很多关于sklearn的学习教程,大部分都是简单的讲清楚某一方面,其实最好的教程就是官方文档. 官方文档地址:https://scikit-learn.org/stable/ (可是官方文档非常 ...
- Python机器学习笔记:不得不了解的机器学习面试知识点(1)
机器学习岗位的面试中通常会对一些常见的机器学习算法和思想进行提问,在平时的学习过程中可能对算法的理论,注意点,区别会有一定的认识,但是这些知识可能不系统,在回答的时候未必能在短时间内答出自己的认识,因 ...
- 机器学习笔记(4):多类逻辑回归-使用gluton
接上一篇机器学习笔记(3):多类逻辑回归继续,这次改用gluton来实现关键处理,原文见这里 ,代码如下: import matplotlib.pyplot as plt import mxnet a ...
- cs229 斯坦福机器学习笔记(一)-- 入门与LR模型
版权声明:本文为博主原创文章,转载请注明出处. https://blog.csdn.net/Dinosoft/article/details/34960693 前言 说到机器学习,非常多人推荐的学习资 ...
- Python机器学习笔记 集成学习总结
集成学习(Ensemble learning)是使用一系列学习器进行学习,并使用某种规则把各个学习结果进行整合,从而获得比单个学习器显著优越的泛化性能.它不是一种单独的机器学习算法啊,而更像是一种优 ...
- 机器学习笔记:Gradient Descent
机器学习笔记:Gradient Descent http://www.cnblogs.com/uchihaitachi/archive/2012/08/16/2642720.html
随机推荐
- python语法小应用---列表和元组
声明:本文章为参考总结CSDN上知识点所获,只是用来总结自己学习而用,如有侵权,会删除! 列表(list): 列表就像一个线性容器,但是比C++的 lis t扩展多得多 列表里的元素可以是相同类型,也 ...
- sklearn聚类模型:基于密度的DBSCAN;基于混合高斯模型的GMM
1 sklearn聚类方法详解 2 对比不同聚类算法在不同数据集上的表现 3 用scikit-learn学习K-Means聚类 4 用scikit-learn学习DBSCAN聚类 (基于密度的聚类) ...
- Eclipse开发环境配置
1. java环境 安装 本系统使用java6开发,老师使用1.6.0 _45版本开发,如下图所示: "开发工具"目录提供了1.6.0 _45版本32位和64位两个安装程序,大家根 ...
- Java+Jmeter接口测试
一.创建工程.引包 1.创建JAVA工程 2.引入Jmeter中lib\ext基础包:ApacheJMeter_java.jar.ApacheJMeter_core.jar 3.引入Jmeter日志包 ...
- 父窗口中获取iframe中的元素
js 在父窗口中获取iframe中的元素 1. 格式:window.frames["iframe的name值"].document.getElementById("ifr ...
- vue组件库(二):基于verdaccio工具npm私服搭建
大纲 搭建npm私服的必要性 搭建npm私服的主要操作 一.搭建npm私服的必要性 二.搭建npm私服的主要操作 1.环境准备 确保服务器已安装以下包: node(必须) 安装了nodenpm,如果想 ...
- Lucene.Net简介
说明:Lucene.Net 只是一个全文检索开发包 .查询数据的时候从Lucene.Net查询数据.可以看做是一个提供了全文检索功能的数据库. 注意:只能搜索文本字符串. 重要概念:分词,基于词库的分 ...
- java 判断字符串什么编码类型
public static String getEncoding(String str) { String encode = "GB2312"; try { if (str.equ ...
- ERP产品销售发货判断库存功能(四十二)
产品数量的前端(键盘抬起的事件): <td> <input type="text" name="proCount" onkeyup=" ...
- [ZJOI2012]数列
超级水的题还wa了一次 首先很容易发现其实就只有两个值并存 然后 要注意把数组初始化啊...可能后面有多余的元素(对拍的时候由于从小到大就没跑出错) #include <bits/stdc++. ...