算法:最短路径之弗洛伊德(Floyd)算法
https://cloud.tencent.com/developer/article/1012420
为了能讲明白弗洛伊德(Floyd)算法的主要思想,我们先来看最简单的案例。图7-7-12的左图是一个简单的3个顶点的连通网图。
我们先定义两个二维数组D[3][3]和P[3][3], D代表顶点与顶点的最短路径权值和的矩阵。P代表对应顶点的最短路径的前驱矩阵。在未分析任何顶点之前,我们将D命名为D(-1),其实它就是初始图的邻接矩阵。将P命名为P(-1), 初始化为图中的矩阵。
首先我们来分析,所有的顶点经过v0后到达另一顶点的最短路径。因为只有3个顶点,因此需要查看v1->v0->v2,得到
D(-1)[1][0] + D(-1)[0][2] = 3。D(-1)[1][2]表示的是v1->v2的权值为5,我们发现D(-1)[1][2] > D(-1)[1][0] + D(-1)[0][2] ,通俗话来说就是
v1->v0->v2 比v1->v2距离还要近。所以我们就让 D(-1)[1][2] = D(-1)[1][0] + D(-1)[0][2] = 3, 同样地D(-1)[2][1] = 3, 于是就有了D(0)矩阵。因为有变化,所以P矩阵对应的P(-1)[1][2]和P(-1)[2][1]也修改为当前中转的顶点v0的下标0, 于是就有了P(0)。也就是说
接下来,也就是在D(0)和P(0)的基础上继续处理所有顶点经过v1和v2后到达另一顶点的最短路径,得到D(1)和P(1)、D(2)和P(2)完成所有顶点到所有顶点的最短路径计算工作。
首先我们针对图7-7-13的左网图准备两个矩阵D(-1)和P(-1),D(-1)就是网图的邻接矩阵,P(-1)初设为P[i][j]=j 这样的矩阵。主要用来存储路径。
代码如下(改编自《大话数据结构》):注意因为是要求所有顶点到所有顶点的最短路径,因为使用二维数组。
#include<iostream>
using namespace std; #define MAXEDGE 20
#define MAXVEX 20
#define INFINITY 65535 typedef struct
{
int vexs[MAXVEX];
int arc[MAXVEX][MAXVEX];
int numVertexes, numEdges;
} MGraph; typedef int Patharc[MAXVEX][MAXVEX];
typedef int ShortPathTable[MAXVEX][MAXVEX]; /* 构建图 */
void CreateMGraph(MGraph *G)
{
int i, j; /* printf("请输入边数和顶点数:"); */
G->numEdges = 16;
G->numVertexes = 9; for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
{
G->vexs[i] = i;
} for (i = 0; i < G->numVertexes; i++)/* 初始化图 */
{
for ( j = 0; j < G->numVertexes; j++)
{
if (i == j)
G->arc[i][j] = 0;
else
G->arc[i][j] = G->arc[j][i] = INFINITY;
}
} G->arc[0][1] = 1;
G->arc[0][2] = 5;
G->arc[1][2] = 3;
G->arc[1][3] = 7;
G->arc[1][4] = 5; G->arc[2][4] = 1;
G->arc[2][5] = 7;
G->arc[3][4] = 2;
G->arc[3][6] = 3;
G->arc[4][5] = 3; G->arc[4][6] = 6;
G->arc[4][7] = 9;
G->arc[5][7] = 5;
G->arc[6][7] = 2;
G->arc[6][8] = 7; G->arc[7][8] = 4; for(i = 0; i < G->numVertexes; i++)
{
for(j = i; j < G->numVertexes; j++)
{
G->arc[j][i] = G->arc[i][j];
}
} }
/* Floyd算法,求网图G中各顶点v到其余顶点w的最短路径P[v][w]及带权长度D[v][w]。 */
void ShortestPath_Floyd(MGraph MG, Patharc P, ShortPathTable D)
{
int v, w, k;
for (v = 0; v < MG.numVertexes; v++)/* 初始化D与P */
{
for (w = 0; w < MG.numVertexes; w++)
{
D[v][w] = MG.arc[v][w];/* D[v][w]值即为对应点间的权值 */
P[v][w] = w;/* 初始化P */
}
} for (k = 0; k < MG.numVertexes; k++)
{
for (v = 0; v < MG.numVertexes; v++)
{
for (w = 0; w < MG.numVertexes; w++)
{
/* 如果经过下标为k顶点路径比原两点间路径更短 */
if (D[v][w] > D[v][k] + D[k][w])
{
/* 将当前两点间权值设为更小的一个 */
D[v][w] = D[v][k] + D[k][w];
P[v][w] = P[v][k];/* 路径设置为经过下标为k的顶点 */
}
}
}
}
} int main(void)
{
int v, w, k;
MGraph MG;
Patharc P;
ShortPathTable D;
CreateMGraph(&MG);
ShortestPath_Floyd(MG, P, D); cout << "各顶点间最短路径如下: " << endl; for (v = 0; v < MG.numVertexes; v++)
{
for (w = v + 1; w < MG.numVertexes; w++)
{
cout << "v" << v << "--" << "v" << w << " weight: " << D[v][w]
<< " Path: " << v << ' ';
k = P[v][w];
while (k != w)
{
cout << "-> " << k << " ";
k = P[k][w];
}
cout << "-> " << w << endl;
}
cout << endl;
} return 0;
}
输出为:

程序中的算法代码非常简洁,即用了一个三层循环,k代表的是中转结点的下标,v代表起始结点,w代表结束终点。k = 0 ~ 8,表示针对每个顶点作为中转结点得到的计算结果,最终当k = 8时,两矩阵数据如图7-7-16所示。

从上图我们可以看到第v2行的数值与Dijkstra算法求得的D数组的数值完全一样,都是{4, 3, 0, 3, 1, 4, 6, 8, 12 }, 而且这里是所有顶点到所有顶点的最短路径权值和都可以计算得出。那么如何由P这个路径数组得出具体的最短路径呢?以v2到v8为例,P[2][8] = 4,说明要经过顶点v4, 将4替换2,P[4][8] = 3, 说明经过v3, ......., 最终推导出最短路径为:v2->v4->v3->v6->v7->v8。
Floyd算法使用了三层循环,故时间复杂度也为O(n^3),与Dijkstra算法一致,不过Floyd算法代码简洁,虽简洁但也不一定好懂,还是需要多加揣摩才能领会。另外,虽然我们使用的例子都是无向图的,但它们对于有向图依然有效,只不过在创建图的时候,有向图的邻接矩阵不是对称的而已。
算法:最短路径之弗洛伊德(Floyd)算法的更多相关文章
- JS实现最短路径之弗洛伊德(Floyd)算法
弗洛伊德算法是实现最小生成树的一个很精妙的算法,也是求所有顶点至所有顶点的最短路径问题的不二之选.时间复杂度为O(n3),n为顶点数. 精妙之处在于:一个二重初始化,加一个三重循环权值修正,完成了所有 ...
- 数据结构与算法——弗洛伊德(Floyd)算法
介绍 和 Dijkstra 算法一样,弗洛伊德(Floyd)算法 也是一种用于寻找给定的加权图中顶点间最短路径的算法.该算法名称以创始人之一.1978 年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特 ...
- 最短路径 - 弗洛伊德(Floyd)算法
为了能讲明白弗洛伊德(Floyd)算法的主要思想,我们先来看最简单的案例.图7-7-12的左图是一个简单的3个顶点的连通网图. 我们先定义两个二维数组D[3][3]和P[3][3], D代表顶点与顶点 ...
- 图的最短路径---弗洛伊德(Floyd)算法浅析
算法介绍 和Dijkstra算法一样,Floyd算法也是为了解决寻找给定的加权图中顶点间最短路径的算法.不同的是,Floyd可以用来解决"多源最短路径"的问题. 算法思路 算法需要 ...
- 最短路径:Dijkstra & Floyd 算法图解,c++描述
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- C# 弗洛伊德(Floyd)算法
弗洛伊德(Floyd)算法 主要是用于计算图中所有顶点对之间的最短距离长度的算法,如果是要求某一个特定点到图中所有顶点之间的最短距离可以用; ; ; ; ...
- [Python] 弗洛伊德(Floyd)算法求图的直径并记录路径
相关概念 对于一个图G=(V, E),求图中两点u, v间最短路径长度,称为图的最短路径问题.最短路径中最长的称为图的直径. 其中,求图中确定的某两点的最短路径算法,称为单源最短路径算法.求图中任意两 ...
- [hihoCoder] #1089 : 最短路径·二:Floyd算法
时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 万圣节的中午,小Hi和小Ho在吃过中饭之后,来到了一个新的鬼屋! 鬼屋中一共有N个地点,分别编号为1..N,这N个地点之间 ...
- 弗洛伊德(Floyd)算法
#include <stdio.h> #define MAXVEX 20 //最大顶点数 #define INFINITY 65535 //∞ typedef struct {/* 图结构 ...
- 弗洛伊德算法(Floyd算法)
原博来自http://www.cnblogs.com/skywang12345/ 弗洛伊德算法介绍 和Dijkstra算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的 ...
随机推荐
- Python3基础 list count 查询指定元素在列表中出现了多少次
Python : 3.7.0 OS : Ubuntu 18.04.1 LTS IDE : PyCharm 2018.2.4 Conda ...
- minicom支持向串口自动发送命令的功能
1. 用法 minicom -S <script name> -C <log name> 参数解析: -S: 指定要执行的脚本 -C: 指定输出日志文件名 2. 既然可以指定脚 ...
- 洛谷1968美元汇率 dp
P1968 美元汇率 dp 题目描述 在以后的若干天里戴维将学习美元与德国马克的汇率.编写程序帮助戴维何时应买或卖马克或美元,使他从100美元开始,最后能获得最高可能的价值. 输入输出格式 输入格式: ...
- Component 父子组件关系
我们把组件编写的代码放到构造器外部或者说单独文件 我们需要先声明一个对象,对象里就是组件的内容. var zdy = { template:`<div>Panda from China!& ...
- win7 "com surrogate“ 已停止工作的解决办法
1.在文件夹选项里选“始终显示图标,从不显示缩略图”. 2.数据执行保护(DEB),依次打开:计算机——属性——高级系统设置——高级——性能——设置——数据执行保护 选下面的单选按钮“为除下列选定程序 ...
- BZOJ 2809: [Apio2012]dispatching(左偏树)
http://www.lydsy.com/JudgeOnline/problem.php?id=2809 题意: 思路:最简单的想法就是枚举管理者,在其子树中从薪水低的开始选起,但是每个节点都这样处理 ...
- 【Java】【路径】
[java中Class.getResource用法(用于配置文件的读取)] 用JAVA获取文件,听似简单,但对于很多像我这样的新人来说,还是掌握颇浅,用起来感觉颇深,大常最经常用的,就是用JAVA的F ...
- node.js基本概念简单解释
1:什么是回调函数? 2:什么是同步异步 3:什么是I/O 4:什么是单线程/多线程 5:什么是阻塞/非阻塞 6:什么是事件 7:什么是事件驱动 8:什么是事件驱动的回调 9:什么是事件循环 解释: ...
- [原][粒子特效][spark]事件action
深入浅出spark粒子特效连接:https://www.cnblogs.com/lyggqm/p/9956344.html group调用action的地方: 可以看到使用action的可以是出生一次 ...
- String,StringBuilder区别,一个是常量,一个是可变量
String str="这就是爱的呼唤,这就是爱的奉献!!"; //这个str是不可变的字符串序列,要变会生成新的字符串,原字符串不变,是常量 StringBuilder sBui ...