1.概述:

QLearning基于值函数的方法,不同与policy gradient的方法,Qlearning是预测值函数,通过值函数来选择

值函数最大的action,而policy gradient直接预测出action。

Q-learning 是一种基于值函数估计的强化学习方法,Policy Gradient是一种策略搜索强化学习方法。
两者是求解强化学习问题的不同方法,如果熟悉监督学习,
前者可类比Naive Bayes——通过估计后验概率来得到预测,
后者可类比SVM——不估计后验概率而直接优化学习目标。

目标就是选择出最佳action。

2一些定义

2.1值函数

Given an actor π, it evaluates how good the actor is

有2种值函数,V(S) 、Q(s,a).

2.1.1 V(S)

有2种衡量的方法:

MC方法只能等玩完一个episode才能进行统计评价,效率比较低。

TD方法可以每玩一步就更新一次。

mc与td对比,mc需要估计的是一个episode的值函数,方差比较大,而td是与时间相关的,只有r是需要估计的,方差比较小。

下面看一下例子:

V(Sb)=6/8=1

MC:  V(Sa)=0/2=0

TD: V(Sa)=V(Sb)+0=3/4

2.1.2 Q(s,a)

我们可以评估,在当前状态s,采取行动a,在接下来的游戏中获得得奖励累计和的期望为Q(s,a)。但在接下来的游戏中,

不一定采取行动a,而是采取Q值最大的行动。

下图中1,无论采取那个行动都无所谓,因为离球还很远,而图2离球比较近了,我们需要向上接到球,接下来游戏才能获得奖励。

3 怎么用

我们利用PI去与环境互动,得到一些互动数据,通过TDorMC的方法去更新Q(s,a)的参数,

根据更新后的Q,我们选择一个更好的pi_new,然后把pi更新为pi_new,再去与环境互动。

tips:pi_new 是完全取决于Q,没有新参数。

3.1 target network

3.2 Epsilon Greedy

如果我们只选择Q值最大的action,如果碰巧其他的action没有被采样到,这样其他的action将更不会被选择,

并不是他们不好,所以需要打破这种循环,我们以一定的几率选择Q最大的,还有几率选择其他的action。

3.3 Replay Buffer

我们将历史数据存到Buffer里,然后训练的时候随机选一批,还要定期更新Buffer

3.4 完整算法

4 QLeaning 进阶

参考:

链接:https://www.zhihu.com/question/49787932/answer/124727629

https://www.youtube.com/watch?v=2-zGCx4iv_k&list=PLJV_el3uVTsODxQFgzMzPLa16h6B8kWM_&index=4

强化学习--QLearning的更多相关文章

  1. 强化学习 - Q-learning Sarsa 和 DQN 的理解

    本文用于基本入门理解. 强化学习的基本理论 : R, S, A 这些就不说了. 先设想两个场景:  一. 1个 5x5 的 格子图, 里面有一个目标点,  2个死亡点二. 一个迷宫,   一个出发点, ...

  2. 强化学习Q-Learning算法详解

    python风控评分卡建模和风控常识(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005214003&am ...

  3. 强化学习-Q-Learning算法

    1. 前言 Q-Learning算法也是时序差分算法的一种,和我们前面介绍的SARAS不同的是,SARSA算法遵从了交互序列,根据当前的真实行动进行价值估计:Q-Learning算法没有遵循交互序列, ...

  4. 深度学习之强化学习Q-Learning

    1.知识点 """ 1.强化学习:学习系统没有像很多其他形式的机器学习方法一样被告知应该做什么行为, 必须在尝试之后才能发现哪些行为会导致奖励的最大化,当前的行为可能不仅 ...

  5. 强化学习——Q-learning算法

    假设有这样的房间     如果将房间表示成点,然后用房间之间的连通关系表示成线,如下图所示:       这就是房间对应的图.我们首先将agent(机器人)处于任何一个位置,让他自己走动,直到走到5房 ...

  6. 强化学习-Q-learning学习笔记

    Q学习动作探索策略中的ep-greepy,以ep的概率进行随机探索,以1-ep的概率以最大值策略进行开发,因为设定的迭代次数比较多,所以肯定存在一定的次数去搜索不同的动作. 1)Python版本 b站 ...

  7. 强化学习之Q-learning简介

    https://blog.csdn.net/Young_Gy/article/details/73485518 强化学习在alphago中大放异彩,本文将简要介绍强化学习的一种q-learning.先 ...

  8. 强化学习之QLearning

    注:以下第一段代码是 文章 提供的代码,但是简书的代码粘贴下来不换行,所以我在这里贴了一遍.其原理在原文中也说得很明白了. 算个旅行商问题 基本介绍 戳 代码解释与来源 代码整个计算过程使用的以下公式 ...

  9. (译) 强化学习 第一部分:Q-Learning 以及相关探索

    (译) 强化学习 第一部分:Q-Learning 以及相关探索 Q-Learning review: Q-Learning 的基础要点是:有一个关于环境状态S的表达式,这些状态中可能的动作 a,然后你 ...

随机推荐

  1. BTree和B+Tree详解

    https://www.cnblogs.com/vianzhang/p/7922426.html B+树索引是B+树在数据库中的一种实现,是最常见也是数据库中使用最为频繁的一种索引.B+树中的B代表平 ...

  2. Transparent HugePages(透明大页)

    Transparent HugePages(透明大页) 1. 介绍 从RedHat6, RedHat7, OL6, OL7 SLES11 and UEK2 kernels开始,透明大页默认是被开启的以 ...

  3. /var/run/utmp文件操作函数

    相关函数:getutent, getutid, getutline, setutent, endutent, pututline, utmpname utmp 结构定义如下:struct utmp{  ...

  4. 005-优化web请求一-gzip压缩、http缓存控制和缓存校验[Pragma、Expires、Cache-Control、max-age、Last-Modified、用户刷新访问、避免过度304]

    优化Web应用的典型技术:缓存控制头信息.Gzip.应用缓存.ETag.反应型技术[异步方法调用和WebSocket] 一.模板缓存 spring.thymeleaf.cache=true sprin ...

  5. w97常用功能代码

    1,onclick中添加日期控件 2,onpicked事件即是点击控件后触发的事件 3,dp.cal.getNewDateStr()即是点击到的日期字符串 <script> functio ...

  6. 自己实现strtok函数

    思路:每次在原来字符串中查找分隔字符串,将分隔字符串中所有字符设为'\0',然后输出分隔串前的子串,同时更新原串的起始位置. PS:有不少博客作者自己实现的方法中往往只将分隔串当做一个字符,实际上可以 ...

  7. numpy的searchsorted细品

      import numpy as np a= np.arange(20) pos_left = a.searchsorted(3)    #也可以写成np.searchsorted(a, 3), 注 ...

  8. [django]详情页列表页

    详情页列表页 列表页展示titile--这个模型的部分字段 详情页展示这个模型的所有字段 我想看下related_name这个从主表取子表数据 取数据--官网投票例子 https://docs.dja ...

  9. Day5 函数递归,匿名、内置行数,模块和包,开发规范

    一.递归与二分法 一.递归 1.递归调用的定义 递归调用:在调用一个函数的过程中,直接或间接地调用了函数本身 2.递归分为两类:直接与间接 #直接 def func(): print('from fu ...

  10. (转)Java大数操作(BigInteger、BigDecimal)

    基础知识 对于二进制来说,最高位代表正负号,-0表示-128,+0表示032位系统int型4个字节:-(2的31次方) ~ (2的31次方) 减 1最大负数:10000000 00000000 000 ...