案例三比较简单,不需要自己写公式算法,使用了R自带的naiveBayes函数。

代码如下:

> library(e1071)
> classifier<-naiveBayes(iris[,1:4], iris[,5])
#或写成下面形式,都可以。
> classifier<- naiveBayes(Species ~ ., data = iris) #其中Species是类别变量 #预测
> predict(classifier, iris[1, -5])

预测结果为:

[1] setosa
Levels: setosa versicolor virginica

和原数据一样!

*********************************这里是分割线**************************************

我们再拿这个方法来预测一下案例一中的样本。

#样本数据集:
mydata <- matrix(c("sunny","hot","high","weak","no",
"sunny","hot","high","strong","no",
"overcast","hot","high","weak","yes",
"rain","mild","high","weak","yes",
"rain","cool","normal","weak","yes",
"rain","cool","normal","strong","no",
"overcast","cool","normal","strong","yes",
"sunny","mild","high","weak","no",
"sunny","cool","normal","weak","yes",
"rain","mild","normal","weak","yes",
"sunny","mild","normal","strong","yes",
"overcast","mild","high","strong","yes",
"overcast","hot","normal","weak","yes",
"rain","mild","high","strong","no"), byrow = TRUE, nrow=14, ncol=5) #添加列名:
colnames(mydata) <- c("outlook","temperature","humidity","wind","playtennis") #贝叶斯算法:
m<-naiveBayes(mydata[,1:4], mydata[,5])
#或使用下面的方法
m<- naiveBayes(playtennis ~ ., data = mydata)
#报错:Error in sum(x) : invalid 'type' (character) of argument 无效的类型,只能是数字? #创建预测数据集:
new_data = data.frame(outlook="rain", temperature="cool", humidity="normal", wind="strong", playtennis="so") #预测:
predict(m, new_data)

在使用naiveBayes函数时报错:Error in sum(x) : invalid 'type' (character) of argument

我们看一下官方文档,对data有这样一句描述:

data  Either a data frame of predictors (categorical and/or numeric) or a contingency table.

data是一个数字类型的数据框。

数据分析与挖掘 - R语言:贝叶斯分类算法(案例三)的更多相关文章

  1. 数据分析与挖掘 - R语言:贝叶斯分类算法(案例一)

    一个简单的例子!环境:CentOS6.5Hadoop集群.Hive.R.RHive,具体安装及调试方法见博客内文档. 名词解释: 先验概率:由以往的数据分析得到的概率, 叫做先验概率. 后验概率:而在 ...

  2. 零基础数据分析与挖掘R语言实战课程(R语言)

    随着大数据在各行业的落地生根和蓬勃发展,能从数据中挖金子的数据分析人员越来越宝贝,于是很多的程序员都想转行到数据分析, 挖掘技术哪家强?当然是R语言了,R语言的火热程度,从TIOBE上编程语言排名情况 ...

  3. 数据分析与挖掘 - R语言:贝叶斯分类算法(案例二)

    接着案例一,我们再使用另一种方法实例一个案例 直接上代码: #!/usr/bin/Rscript library(plyr) library(reshape2) #1.根据训练集创建朴素贝叶斯分类器 ...

  4. 数据分析与挖掘 - R语言:KNN算法

    一个简单的例子!环境:CentOS6.5Hadoop集群.Hive.R.RHive,具体安装及调试方法见博客内文档. KNN算法步骤:需对所有样本点(已知分类+未知分类)进行归一化处理.然后,对未知分 ...

  5. 数据分析与挖掘 - R语言:K-means聚类算法

    一个简单的例子!环境:CentOS6.5Hadoop集群.Hive.R.RHive,具体安装及调试方法见博客内文档. 1.分析题目--有一个用户点击数据样本(husercollect)--按用户访问的 ...

  6. 数据分析与挖掘 - R语言:多元线性回归

    一个简单的例子!环境:CentOS6.5Hadoop集群.Hive.R.RHive,具体安装及调试方法见博客内文档. 线性回归主要用来做预测模型. 1.准备数据集: X Y 0.10 42.0 0.1 ...

  7. R语言分类算法之随机森林

    R语言分类算法之随机森林 1.原理分析: 随机森林是通过自助法(boot-strap)重采样技术,从原始训练样本集N中有放回地重复随机抽取k个样本生成新的训练集样本集合,然后根据自助样本集生成k个决策 ...

  8. R语言 神经网络算法

    人工神经网络(ANN),简称神经网络,是一种模仿生物神经网络的结构和功能的数学模型或计算模型.神经网络由大量的人工神经元联结进行计算.大多数情况下人工神经网络能在外界信息的基础上改变内部结构,是一种自 ...

  9. R语言、02 案例2-1 Pelican商店、《商务与经济统计》案例题

    编程教材 <R语言实战·第2版>Robert I. Kabacoff 课程教材<商务与经济统计·原书第13版> (安德森) P48.案例2-1 Pelican 商店 PS C: ...

随机推荐

  1. AD 16 下绘图的几个技巧

    1.绘制封装如果引脚过多怎么办,使用阵列粘贴功能 首先建立一个焊盘,然后选中,使用 ctrl + c 复制,注意复制确认的时候,鼠标一定要点击到焊盘中间. 选择阵列粘贴 条款就是你要复制多少个,增量就 ...

  2. hive优化之并行执行任务

    1.与Oracle并行技术一样,hive在执行mapreduce作业时也可以执行并行查询.针对于不同业务场景SQL语句的执行情况,有些场景下SQL的执行是需要分割成几段去执行的,而且期间并不全是存在依 ...

  3. 下载文件的协议:HTTP、FTP、P2P

    本篇学习笔记以HTTP.FTP.P2P叙述与网上下载文件有关的协议 需要掌握的要点: 下载一个文件可以使用 HTTP 或 FTP,这两种都是集中下载的方式,而 P2P 则换了一种思路,采取非中心化下载 ...

  4. c# 字符串转为数字

    C#判断输入是否数字 /// <summary> /// 判断输入是否数字 /// </summary> /// <param name="num"& ...

  5. transformations 变换集合关系 仿射变换

    http://groups.csail.mit.edu/graphics/classes/6.837/F03/lectures/04_transformations.ppt https://group ...

  6. [dpdk] dpdk多线程任务调度

    DPDK下的线程,叫做EAL线程. EAL线程默认是与CPU core一对一绑定的,这样的话,有一些实时性,计算量不高的任务独占CORE是一种浪费,大概找了如下几种解决方案. 1. dpdk seri ...

  7. Visio 画图

    流程图 圆角矩形表示"开始"与"结束" 矩形表示行动方案.普通工作环节用 菱形表示问题判断或判定(审核/审批/评审)环节 平行四边形表示输入输出 箭头代表工作流 ...

  8. ANT入门&用ANT编译java项目

    第一次接触ant是15年在无锡某软件公司实习时,当时的项目是由多个模块组成,开发分成模块开发的几个小组.为了提高开发效率,采用这种编译项目的方法. 最近接触到flex项目,采用eclipse自动编译的 ...

  9. BTree和B+Tree详解

    https://www.cnblogs.com/vianzhang/p/7922426.html B+树索引是B+树在数据库中的一种实现,是最常见也是数据库中使用最为频繁的一种索引.B+树中的B代表平 ...

  10. day3_字典

    一.说明 字典的每个键值(key=>value)对用冒号(:)分割,每个对之间用逗号(,)分割,整个字典包括在花括号({})中 ,格式如下所示: dict = {key1:value1,key2 ...