扩展欧几里得,解线性同余方程 逆元 poj1845
定理:对于任意整数a,b存在一堆整数x,y,满足ax+by=gcd(a,b)
int exgcd(int a,int b,int &x,int &y){
if(b==){x=,y=;return a;}
int d=exgcd(b,a%b,x,y);
int z=x;x=y;y=z-y*(a/b);
return d;
}
当d可以整除c时,一般方程ax+by=c的一组特解求法:
1.求ax+by=d的特解x0,y0
2.ax+by=c的特解为(c/d)x0,(c/d)y0
上述方程的通解:(c/d)x0+k(b/d) ,(c/d)y0-k(a/d)
乘法逆元有自然数倒数的类似性质
乘法逆元:b,m互质,并且b整除a,则存在x,有a/b = a*x(mod m),即a/b模m的结果和a*x模m的结果是相同的,这个x称为b的模m的乘法逆元,记作b^(-1) (mod m)
可得b*b^(-1) = 1(mod m)
那么当m是质数时,根据费马小定理,有b^(m-1)=1(mod m),那么b的逆元就是b^(m-2)
如果只是保证b,m互质,那么解同余方程b*x=1(mod m)可以求出x
所以当遇到除法取模运算时,可以先求出逆元,转换成乘法取模运算
/*
如果单独是个A,那么就可以分解质因数后用公式求约数个数
那么B个A相乘,其约数个数就是mul{1+p^1+p^2...+p^B*ci}
结果是比数列求和后再相乘,每项等比数列的结果是
(pi^(B*ci+1)-1)/(pi-1) mod9901,
1.pi-1不是9901的倍数,(pi-1)^(9901-2)就是逆元
2.pi-1是9901的倍数,逆元不存在,但是pi mod 9901=1。。。 先把A分解质因数,再等比数列求和(快速幂+逆元),
*/
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
#define mod 9901 int m,p[],c[];
void divide(int n){
m=;
for(int i=;i*i<=n;i++)
if(n%i==){
p[++m]=i,c[m]=;
while(n%i==) n/=i,c[m]++;
}
if(n>) p[++m]=n,c[m]=;
}
ll pow(ll a,ll b){
ll res=;
while(b){
if(b&) res=res*a%mod;
a=a*a%mod;
b>>=;
}
return res;
} int main(){
ll a,b,ans=;
scanf("%lld%lld",&a,&b);
divide(a);//分解质因数
for(int i=;i<=m;i++){
if((p[i]-)%mod==){
ans=ans*(b*c[i]+)%mod;
continue;
}
//求分子和分母逆元
ll x=pow(p[i],b*c[i]+)%mod;
x=(x-+mod)%mod;
ll y=pow(p[i]-,mod-)%mod;
ans=ans*x%mod*y%mod;
}
printf("%lld\n",ans);
}
求解同余方程:a*x=b(mod m)等价于a*x-b是m的倍数,等价于a*x+m*y=b,当gcd(a,m)|b时,有解
按照拓展欧几里得算法,可解得特解x=x0*b/gcd(a,m)就是原线性同余方程的一个解
通解为所有模m/gcd(a,m)与x同余的整数
求解同余方程:noip2012:a*x=1(mod b)的最小整数解
#include<bits/stdc++.h>
using namespace std;
#define ll long long ll a,b,x,y;
ll exgcd(ll a,ll b,ll &x,ll &y){
if(!b){x=;y=;return a;}
ll d=exgcd(b,a%b,x,y);
ll z=x; x=y,y=z-y*(a/b);
return d;
}
int main(){
cin >> a >> b;
exgcd(a,b,x,y);//x可能是负数
cout << (x%b+b)%b<<endl;
}
扩展欧几里得,解线性同余方程 逆元 poj1845的更多相关文章
- Poj 1061 青蛙的约会(扩展欧几里得解线性同余式)
一.Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要 ...
- poj 1061 扩展欧几里得解同余方程(求最小非负整数解)
题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+ ...
- 【扩展欧几里得】NOIP2012同余方程
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...
- poj 2142 扩展欧几里得解ax+by=c
原题实际上就是求方程a*x+b*y=d的一个特解,要求这个特解满足|x|+|y|最小 套模式+一点YY就行了 总结一下这类问题的解法: 对于方程ax+by=c 设tm=gcd(a,b) 先用扩展欧几里 ...
- POJ2115 - C Looooops(扩展欧几里得)
题目大意 求同余方程Cx≡B-A(2^k)的最小正整数解 题解 可以转化为Cx-(2^k)y=B-A,然后用扩展欧几里得解出即可... 代码: #include <iostream> us ...
- C. Ray Tracing——披着搜索外衣的扩展欧几里得
[题目大意] 给你一个n*m的矩形,光线从(0,0)出发,沿右上方向以每秒根号2米的速度运动,碰到矩形边界就会反弹(符合物理规律的反弹),询问k个点,这些点都在矩形内部且不在矩形边界上,求光经过这些点 ...
- bzoj1407 [Noi2002]Savage——扩展欧几里得
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1407 看到一定有解,而且小于10^6,所以可以枚举: 判断一个解是否可行,就两两判断野人 i ...
- Uva12169 扩展欧几里得模板
Uva12169(扩展欧几里得) 题意: 已知 $x_i=(a*x_{i-1}+b) mod 10001$,且告诉你 $x_1,x_3.........x_{2t-1}$, 让你求出其偶数列 解法: ...
- 【Luogu】P1516青蛙的约会(线性同余方程,扩展欧几里得)
题目链接 定理:对于方程\(ax+by=c\),等价于\(a*x=c(mod b)\),有整数解的充分必要条件是c是gcd(a,b)的整数倍. ——信息学奥赛之数学一本通 避免侵权.哈哈. 两只青蛙跳 ...
随机推荐
- python爬虫 beutifulsoup4_1官网介绍
http://www.crummy.com/software/BeautifulSoup/bs4/doc/ Beautiful Soup Documentation Beautiful Soup is ...
- MySQL开启远程连接的方法
默认情况下,mysql只允许本地登录,如果要开启远程连接,则需要修改/etc/mysql/my.conf文件. 一.修改/etc/mysql/my.conf找到bind-address = 127.0 ...
- JAVA-常用集合类型转换例子(基础必备)
package com.net.xinfang.reflect; import java.util.ArrayList; import java.util.Arrays; import java.ut ...
- Hive记录-单机impala配置
1.先决条件配置了hadoop.hive等 2.官网查看版本信息下载相应的安装包 http://archive.cloudera.com/cdh5/redhat/5/x86_64/cdh/5.10/R ...
- python 小程序,打印数字
要求如下: 指定一个数字 x ,然后打印 1到x 的所有数字,并问是否继续打印,否退出程序,是就继续.再指定一个数字 y ,如果 y> x 就显示 x+1 到 y 的所有数字,y <= x ...
- vue 裁剪图片,插件Cropper的使用
全局安装 npm install cropperjs 如果想本项目安装,方便移植: import Cropper from 'cropperjs' --save 这样的话,本地 p ...
- EventKey为last_trade_no的subscribe关注事件
如果用户曾经在该公众号有支付行为,关注的时候EventKey中将包含上次交易订单号,如 last_trade_no_4002752001201704258347703919 <xml> & ...
- QDialog对话框
QDialog对话框,用来实现那些只是暂时存在的用户界面,是独立的窗口,但通常也有父窗口对话框有模态和非模态两种,,非模态对话框的行为和使用方法都类似于普通的窗口,模态对话框则有所不同,当模态对话框显 ...
- 字体选择框QFontComboBox
self.combobox_2 = QFontComboBox(self) # 实例化字体列表框 combobox.currentFont() 返回字体选择框中当前的字体 self.combobo ...
- 解决xadmin登录卡顿延迟的问题
我的django项目引入xadmin作为后台,之前登录一直很快,今天突然怎么也登录不了. 怀疑是xadmin请求了网络资源,当我断网再次登录,果然进去了. 然后在xadmin文件夹右键-find in ...