# cpu 的核心数
# import os
# print(os.cpu_count()) #
# 爬虫的进程和线程的应用
# 第一步 虚拟一个浏览器下载 在cmd 里输入 pip install requests 会下载并安装成功后
# requests 意思就下载网站的源代码 没有解析的功能
# import requests
# response = requests.get('https://www.python.org')
# # print(response) #
# # 结果:<Response [200]> 只是内容网站内容并不会给解析
# print(response.text) # 类型字符串 就是源代码
# # =================================
# 题目 解析网址的长度
# import requests
# from threading import current_thread # 什么意思
# urls = ['https://www.python.org',
# 'https://www.baidu.com',
# 'https://www.jd.com',
# 'https://www.tmall.com',]
# def get(url):
# print('%s GET %s'%(current_thread().getName(),url)) #谁在拿到谁
# ##### current_thread().gernName() 好像是
# response = requests.get(url)
# if response.status_code == 200: #固定的 下载200才算成功
# return {'url':url,'text':response.text}
### get(url) 是拿到网址 和内容 返回值给下边prase函数的上传参数 res
# def prase(res): #解析
# print('%s GET %s'%(current_thread().getName(),res['url']))
# # ##print('[%s] prase res [%s]'%(res['url'],res['text'])) # ##和下边的是一样的 这个暂时不用
# print('[%s] prase res [%s]'% (res['url'],len(res['text']))) #结果用长度替换字典的网址内容代码
##以上两行可以写成一行
# print('[%s] <%s> (%s)'%(current_thread().getName(),res['url'],len(res['text']))) # 方法一 普通
# for url in urls:
# res = get(url)
# prase(res)
# 结果: 通过循环正常 串着执行 打印出
# MainThread GET https://www.python.org
# MainThread GET https://www.python.org
# [https://www.python.org] prase res [48856]
# MainThread GET https://www.baidu.com
# MainThread GET https://www.baidu.com
# [https://www.baidu.com] prase res [2443]
# MainThread GET https://www.jd.com
# MainThread GET https://www.jd.com
# [https://www.jd.com] prase res [124541]
# MainThread GET https://www.tmall.com
# MainThread GET https://www.tmall.com
# [https://www.tmall.com] prase res [212078]
#
# ------------------------------
#''
# 异步调用:
# 提交完任务(为该任务绑定一个回调函数),不用再原地等任务执行完毕拿到结果,可以直接提交下一个任务
# 一个任务一旦执行完毕就会自动触发回调函数的运行
#
# 回调函数的参数是单一的:
# 回调函数的参数就是它所绑定任务的返回值
# 进程的用法
import requests
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
from threading import current_thread
import time,os
def get(url):
print('%s GET %s' %(os.getpid(),url))
response=requests.get(url)
time.sleep(3)
if response.status_code == 200:
return {'url':url,'text':response.text}
def parse(obj):
res=obj.result()
print('[%s] <%s> (%s)' % (os.getpid(), res['url'],len(res['text'])))
if __name__ == '__main__':
urls = [
'https://www.python.org',
'https://www.baidu.com',
'https://www.jd.com',
'https://www.tmall.com', ]
t=ProcessPoolExecutor(2)
for url in urls:
t.submit(get,url).add_done_callback(parse)
#add_done_callback(parse) 相当于一个按钮 前面对象结束后自动触发
# 作用 增加一个回调函数
t.shutdown(wait=True)
print('主',os.getpid()) 线程的应用
import requests
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
from threading import current_thread
import time
import os
def get(url):
print('%s GET %s' %(current_thread().getName(),url))
response=requests.get(url)
time.sleep(3)
if response.status_code == 200:
return {'url':url,'text':response.text}
def parse(obj):
res=obj.result()
print('[%s] <%s> (%s)' % (current_thread().getName(), res['url'],len(res['text'])))
if __name__ == '__main__':
urls = [
'https://www.python.org',
'https://www.baidu.com',
'https://www.jd.com',
'https://www.tmall.com',
]
t=ThreadPoolExecutor(2)
for url in urls:
# obj = t.submit(get,url)
# obj.result()
t.submit(get,url).add_done_callback(parse)
t.shutdown(wait=True)
print('主',os.getpid())

day 33 线程池有关的的更多相关文章

  1. 深入浅出 Java Concurrency (33): 线程池 part 6 线程池的实现及原理 (1)[转]

    线程池数据结构与线程构造方法 由于已经看到了ThreadPoolExecutor的源码,因此很容易就看到了ThreadPoolExecutor线程池的数据结构.图1描述了这种数据结构. 图1 Thre ...

  2. SpringBoot普通消息队列线程池配置

    1 package com.liuhuan.study.config; 2 3 import com.google.common.util.concurrent.ThreadFactoryBuilde ...

  3. NGINX引入线程池 性能提升9倍

    1. 引言 正如我们所知,NGINX采用了异步.事件驱动的方法来处理连接.这种处理方式无需(像使用传统架构的服务器一样)为每个请求创建额外的专用进程或者线程,而是在一个工作进程中处理多个连接和请求.为 ...

  4. java多线程系类:JUC线程池:06之Callable和Future(转)

    概要 本章介绍线程池中的Callable和Future.Callable 和 Future 简介示例和源码分析(基于JDK1.7.0_40) 转载请注明出处:http://www.cnblogs.co ...

  5. 【转】线程及同步的性能 - 线程池 / ThreadPoolExecutors / ForkJoinPool

    线程池和ThreadPoolExecutors 虽然在程序中可以直接使用Thread类型来进行线程操作,但是更多的情况是使用线程池,尤其是在Java EE应用服务器中,一般会使用若干个线程池来处理来自 ...

  6. 并发包的线程池第一篇--ThreadPoolExecutor执行逻辑

    学习这个很长时间了一直没有去做个总结,现在大致总结一下并发包的线程池. 首先,任何代码都是解决问题的,线程池解决什么问题? 如果我们不用线程池,每次需要跑一个线程的时候自己new一个,会导致几个问题: ...

  7. 转:Java Web应用中调优线程池的重要性

    不论你是否关注,Java Web应用都或多或少的使用了线程池来处理请求.线程池的实现细节可能会被忽视,但是有关于线程池的使用和调优迟早是需要了解的.本文主要介绍Java线程池的使用和如何正确的配置线程 ...

  8. java多线程系类:JUC线程池:05之线程池原理(四)(转)

    概要 本章介绍线程池的拒绝策略.内容包括:拒绝策略介绍拒绝策略对比和示例 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3512947.html 拒绝策略 ...

  9. 突破python缺陷,实现几种自定义线程池 以及进程、线程、协程的介绍

    Python线程 Threading用于提供线程相关的操作,线程是应用程序中工作的最小单元. #!/usr/bin/env python # -*- coding:utf-8 -*- import t ...

随机推荐

  1. linux+vs2013编译静态库和动态库

    Linux下创建与使用静态库 Linux静态库命名规则 Linux静态库命名规范,必须是"lib[your_library_name].a":lib为前缀,中间是静态库名,扩展名为 ...

  2. Spring Boot 针对 Java 开发人员的安装指南

    Spring Boot 可以使用经典的开发工具或者使用安装的命令行工具.不管使用何种方式,你都需要确定你的 Java 版本为 Java SDK v1.8 或者更高的版本.在你开始安装之前,你需要确定你 ...

  3. MySQL事务(三)

    一.事务(Innodb锁)的隔离级别概述 并发事务带来的问题: 更新丢失(lost update):当两个或多个事务选择同一行,然后基于最初选定的值更新该行时,由于每个事务都不知道其他事务的存在,就会 ...

  4. WEB环境相关技术、配置

    一.简介(基本概念) web开发中基本概念和用到的技术: A — AJAX AJAX 全称为“ Asynchronous JavaScript and XML ”(异步 JavaScript 和 XM ...

  5. PAT 1015 Reversible Primes

    1015 Reversible Primes (20 分)   A reversible prime in any number system is a prime whose "rever ...

  6. CRM WEB UI 01 BOL向导创建的搜索

    创建BOL的步骤就不说了,自己找,学习这个之前,需要自己先找个SAP CRM资料预习一下 T-CODE:BSP_WD_CMPWB 1.创建组件:输入组件名:ZLYTEST03,点击创建按钮,回车,选择 ...

  7. Hadoop介绍-2.分布式计算框架Hadoop原理及架构全解

    Hadoop是Apache软件基金会所开发的并行计算框架与分布式文件系统.最核心的模块包括Hadoop Common.HDFS与MapReduce. HDFS HDFS是Hadoop分布式文件系统(H ...

  8. 前端基础之CSS的引入+HTML标签选择器+CSS操作属性

    clear:left/ringt属性 CSS:语法形式上由选择器+以及一条或多条声明组成:选择器查找到指定的html标签后,使用css属性设置html标签的样式:                   ...

  9. python3使用requests模块完成get/post/代理/自定义header/自定义Cookie

    一.背景说明 http请求的难易对一门语言来说是很重要的而且是越来越重要,但对于python一是urllib一些写法不太符合人的思维习惯文档也相当难看,二是在python2.x和python3.x中写 ...

  10. CM+CDH安装教程(CentOS)

    一.简单介绍 CM:Cloudera Manager,Cloudera公司编写的一个CDH的管理后台,类似各CMS的管理后台. CDH:Cloudera’s distribution,includin ...