BZOJ 4152

很显然这个题是让找最短路;

这种通过一个节点到达另一个点的路径我们可以想到dijkstra,然后这道题我们可以看到点是比较多的,所以我们怎么存图呢?

首先我们对于任意三个点,A(x1,y2),B(x2,y2),C(x3,y3)(假设A,B,,C相邻),我们画个图,如果我们直接从A到C那么我们走的将会是x的累和取min y的累和,但如果从a到b再到c我们取得是x的差值,y的差值取min加上b到c的距离,通过计算比较,是比直接到省时间的,推广到四个点也是,但是要保证相邻两个点建图,所以我们进行对x从小到大排序,相邻建图,并把边权赋为x的差值,然后进行y的操作同上,那么两点之间有两条边,两个权值,我们将寻找比较并最小权值的任务交给dijkstra啦;这里我用到了堆优化;还有心酸的调试过程...

事实证明,这个题卡spfa..所以堆优化的时间复杂度确定;

#include<algorithm>
#include<bitset>
#include<cctype>
#include<cerrno>
#include<clocale>
#include<cmath>
#include<complex>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<deque>
#include<exception>
#include<fstream>
#include<functional>
#include<limits>
#include<list>
#include<map>
#include<iomanip>
#include<ios>
#include<iosfwd>
#include<iostream>
#include<istream>
#include<ostream>
#include<queue>
#include<set>
#include<sstream>
#include<stack>
#include<stdexcept>
#include<streambuf>
#include<string>
#include<utility>
#include<vector>
#include<cwchar>
#include<cwctype>
#define inf 0x3f
using namespace std;
#define pii pair<int,int>
inline int read()
{
int x=,f=;
char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-;ch=getchar();}
while(isdigit(ch)) {x=(x<<)+(x<<)+(ch^);ch=getchar();}
return x*f;
}
struct pink
{
int x,y,id;
}h[];
struct gg
{
int y,next,v;
}a[<<];
bool mycmp1(pink a,pink b)
{
return a.x<b.x;
}
bool mycmp2(pink s,pink m)
{
return s.y<m.y;
}
int lin[],n,m,tot;
bool vis[];
long long dis[];
inline void init(int x,int y,int z)
{
a[++tot].y=y;
a[tot].v=z;
a[tot].next=lin[x];
lin[x]=tot;
}
/*void dijkstra(int s)
{
priority_queue<pii,vector<pii>,greater<pii> >q;
for(int i=1;i<=n;i++)
dis[i]=inf*(i!=s);
q.push(pii(dis[s],s));
while(!q.empty())
{
pii now=q.top();q.pop();
int u=now.second;
// cout<<")"<<u<<endl;system("pause");
if(dis[u]<now.first) continue;
for(int i=lin[u];i;i=a[i].next)
{
int v=a[i].y;
if(dis[v]>dis[u]+a[i].v)
{
dis[v]=dis[u]+a[i].v;
q.push(pii(dis[v],v));
}
}
}
}*/
inline void dijkstra_heap(int s)
{
memset(dis,0x3f,sizeof(dis));
memset(vis,,sizeof(vis));
priority_queue<pii,vector<pii>,greater<pii> >q;
dis[s]=;
q.push(make_pair(,s));
while (!q.empty())
{
int x=q.top().second;
q.pop();
if (vis[x]) continue;
vis[x]=;
for (int i=lin[x];i;i=a[i].next)
{
int y=a[i].y;
if (dis[y]>dis[x]+a[i].v)
{
dis[y]=dis[x]+a[i].v;
q.push(make_pair(dis[y],y));
}
}
}
}
int main()
{
n=read();
for(int i=;i<=n;i++)
h[i].id=i,h[i].x=read(),h[i].y=read();
sort(h+,h+n+,mycmp1);
for(int i=;i<n;i++)
init(h[i].id,h[i+].id,abs(h[i].x-h[i+].x)),init(h[i+].id,h[i].id,abs(h[i].x-h[i+].x));
sort(h+,h+n+,mycmp2);
for(int i=;i<n;i++)
init(h[i].id,h[i+].id,abs(h[i].y-h[i+].y)),init(h[i+].id,h[i].id,abs(h[i].y-h[i+].y));
dijkstra_heap();
cout<<dis[n]<<endl;
return ;
}

the Captain题解;的更多相关文章

  1. The Captain 题解

    20200216题目题解 这是一篇题解祭题解记,但一共就一道题目.(ROS菜大了) 题目如下: The Captain 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x ...

  2. BZOJ4152:[AMPPZ2014]The Captain——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4152 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1 ...

  3. [题解] [BZOJ4152] The Captain

    题面 题解 将所有点根据

  4. Codeforces Round #271 (Div. 2)题解【ABCDEF】

    Codeforces Round #271 (Div. 2) A - Keyboard 题意 给你一个字符串,问你这个字符串在键盘的位置往左边挪一位,或者往右边挪一位字符,这个字符串是什么样子 题解 ...

  5. 【BZOJ】【4152】【AMPZZ2014】The Captain

    最短路 题解:http://zyfzyf.is-programmer.com/posts/97953.html 按x坐标排序,相邻点之间连边.满足dist(x1,x3)<=dist(x1,x2) ...

  6. 【BZOJ4152】The Captain(最短路)

    [BZOJ4152]The Captain(最短路) 题面 BZOJ Description 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求 ...

  7. 【BZOJ4152】[AMPPZ2014]The Captain 最短路

    [BZOJ4152][AMPPZ2014]The Captain Description 给定平面上的n个点,定义(x1,y1)到(x2,y2)的费用为min(|x1-x2|,|y1-y2|),求从1 ...

  8. 【CODEFORCES】 C. Captain Marmot

    C. Captain Marmot time limit per test 1 second memory limit per test 256 megabytes input standard in ...

  9. CoderForces Round60-(1117A,1117B,1117C题解)

    A. Best Subsegment time limit per test 1 second memory limit per test 256 megabytes input standard i ...

随机推荐

  1. 工厂模式&策略模式。

    抽象.封装,具体事情做得越多,越容易犯错误.这每个做过具体工作的人都深有体会,相反,官做得越高,说出的话越抽象越笼统,犯错误可能性就越少.好象我们从编程序中也能悟出人生道理.(百度百科) 不断抽象封装 ...

  2. MFC 显示图片

    //定义成员变量 CStatic m_picture; m_picture.Create(L"XXX",WS_VISIBLE|WS_CHILD|SS_BITMAP ,CRect(, ...

  3. netframework转core时文件响应流问题

    做将framework webapi项目转成netcore平台上的webapi项目时,发现原来的返回文件响应流在netcore平台下失效.代码如下,返回pdf文件响应流,供前端显示 /// <s ...

  4. C#-----创建DataTable对象

    //DataTable表示内存中数据的一个表 DataTable dt = new DataTable(); /** * public DataColumn Add(string columnName ...

  5. 2017-2018-1 20155228 《信息安全系统设计基础》第六周学习总结&课下作业

    20155228 2017-2018-1 <信息安全系统设计基础>第六周学习总结&课下作业 教材学习内容总结 异常及其种类 异常可以分为四类:中断(interrupt) ,陷阱(t ...

  6. JAVA基础3---JVM内存模型

    Java虚拟机执行Java程序的时候需要使用一定的内存,根据不同的使用场景划分不同的内存区域.有公用的区域随着Java程序的启动而创建:有线程私有的区域依赖线程的启动而创建 JVM内存模型大致可以分为 ...

  7. Codeforces 841A - Generous Kefa

    题目链接:http://codeforces.com/problemset/problem/841/A One day Kefa found n baloons. For convenience, w ...

  8. element ui里dialog关闭后清除验证条件

    //vue <!--添加用户dialog begin--> <el-dialog title="编辑用户" :visible.sync="dialogF ...

  9. Django的View

    一个视图函数(类),简称视图,是一个简单的Python 函数(类),它接受Web请求并且返回Web响应. 响应可以是一张网页的HTML内容,一个重定向,一个404错误,一个XML文档,或者一张图片. ...

  10. Cheerleaders UVA - 11806

    题目大意是: 在一个m行n列的矩形网格中放置k个相同的石子,问有多少种方法?每个格子最多放一个石子,所有石子都要用完,并且第一行.最后一行.第一列.最后一列都要有石子. 容斥原理.如果只是n * m放 ...