题目传送门


题目描述

夏川的生日就要到了。作为夏川形式上的男朋友,季堂打算给夏川买一些生日礼物。
商店里一共有种礼物。夏川每得到一种礼物,就会获得相应喜悦值$W_i$(每种礼物的喜悦值不能重复获得)。
每次,店员会按照一定的概率$P_i$(或者不拿出礼物),将第i种礼物拿出来。季堂每次都会将店员拿出来的礼物买下来。没有拿出来视为什么都没有买到,也算一次购买。
众所周知,白毛切开都是黑的。所以季堂希望最后夏川的喜悦值尽可能地高。
求夏川最后最大的喜悦值是多少,并求出使夏川得到这个喜悦值,季堂的期望购买次数。


输入格式

第一行,一个整数N,表示有N种礼物。
接下来N行,每行一个实数$P_i$和正整数$W_i$,表示第i种礼物被拿出来的概率和可以获得喜悦值。


输出格式

第一行,一个整数表示可以获得的最大喜悦值。
第二行,一个实数表示获得这个喜悦值的期望购买次数,保留3位小数。


样例

样例输出:

3
0.1 2
0.2 5
0.3 7

样例输出:

14
12.167


数据范围与提示

对于10%的数据,N=1。
对于30%的数据,N≤5。
对于100%的数据,N≤20,$0<{W}_{i}≤{10}^{9}$,0<${P}_{i}$≤1且$\sum \limits_{i=1}^{n}{P}_{i}≤1$。


题意解释

又是血淋淋的没看懂题,再次印证了得语文者得OI,售货员一次只可能拿出一个礼物,且每个礼物只能买一次(捂脸……)


题解

偷偷看了看数据范围,喜悦值没有负值,于是乎,第一问就解决了,肯定是把所有礼物的喜悦值加起来。

那么来考虑10%的算法,N=1,我们只需要把这件礼物买下,且这件礼物的期望购买次数是$\frac{1}{P_i}$。

再来考虑30%的算法,那么每种商品都有买或不买两种状态,那么共有$2^N$种状态,$2^{{N}^{3}}$刚好跑过。

状态可以用状压(撞鸭)DP:设dp[S]表示当前状态为S,到买到所有礼物的期望步数。

剩下的那个$N^3$算法很容易想到高斯消元。

那么我们可以写出式子:

$dp[S]=\sum \limits_{i=1}^N P_i \times dp[S']+(1-\sum \limits_{i=1}^N P_i) \times dp[S]+1$

其中,S表示当前状态,S'为上一个状态,i表示没有买过的物品。

写出这个式子,你就跟正解不远了,把式子移个项:

$\sum \limits_{i=1}^N P_i \times dp[S]=\sum \limits_{i=1}^N P_i \times dp[S']+1\\dp[S]=\frac{\sum \limits_{i=1}^N P_i \times dp[S']+1}{\sum \limits_{i=1}^N P_i}$

这就是我们的DP式子啦,时间复杂度$O(2^N)$。

注意HDU输入格式不同,而且是special judge,记得输出时多保留一位即可(跟HDU数据刚了一下午,才发现是special judge,心态瞬间爆炸……)。


代码时刻

#include<bits/stdc++.h>
using namespace std;
int n;
double p[21];
long long w[21];//记得开long long
double dp[2000000];
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%lf%lld",&p[i],&w[i]);
p[0]+=p[i];
w[0]+=w[i];
}
printf("%lld\n",w[0]);//第一问
for(int i=(1<<n)-2;i>=0;i--)//dp
{
double flag=0.0;//分母
for(int j=1;j<=n;j++)
{
if((1<<(j-1))&i)continue;
dp[i]+=p[j]*dp[i|1<<(j-1)];
flag+=p[j];
}
dp[i]=(dp[i]+1.0)/flag;
}
cout<<fixed<<setprecision(3)<<dp[0]<<endl;//保留小数输出第二问
return 0;
}

HDU代码:

#include<bits/stdc++.h>
using namespace std;
int n;
double p[21];
double dp[2000000];
int main()
{
while(~scanf("%lld",&n))
{
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
scanf("%lf",&p[i]);
for(int i=(1<<n)-2;i>=0;i--)
{
double flag=0.0;
for(int j=1;j<=n;j++)
{
if((1<<(j-1))&i)continue;
dp[i]+=p[j]*dp[i|1<<(j-1)];
flag+=p[j];
}
dp[i]=(dp[i]+1.0)/flag;
}
cout<<fixed<<setprecision(4)<<dp[0]<<endl;//注意HDU是special judge
}
return 0;
}

rp++

[HDU4336]:Card Collector(概率DP)的更多相关文章

  1. hdu4336 Card Collector(概率DP,状态压缩)

    In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, fo ...

  2. hdu4336 Card Collector 概率dp(或容斥原理?)

    题意: 买东西集齐全套卡片赢大奖.每个包装袋里面有一张卡片或者没有. 已知每种卡片出现的概率 p[i],以及所有的卡片种类的数量 n(1<=n<=20). 问集齐卡片需要买东西的数量的期望 ...

  3. HDU-4336 Card Collector 概率DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4336 题意:买食品收集n个卡片,每个卡片的概率分别是pi,且Σp[i]<=1,求收集n个卡片需要 ...

  4. HDU4336 Card Collector (概率dp+状压dp)

    http://acm.hdu.edu.cn/showproblem.php?pid=4336 题意:有n种卡片,一个包里会包含至多一张卡片,第i种卡片在某个包中出现的次数为pi,问将所有种类的卡片集齐 ...

  5. $HDU$ 4336 $Card\ Collector$ 概率$dp$/$Min-Max$容斥

    正解:期望 解题报告: 传送门! 先放下题意,,,已知有总共有$n$张卡片,每次有$p_i$的概率抽到第$i$张卡,求买所有卡的期望次数 $umm$看到期望自然而然想$dp$? 再一看,哇,$n\le ...

  6. hdu4336 Card Collector 状态压缩dp

    Card Collector Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...

  7. HDU 4336 Card Collector 期望dp+状压

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4336 Card Collector Time Limit: 2000/1000 MS (Java/O ...

  8. [HDU4336]Card Collector(min-max容斥,最值反演)

    Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  9. hdu 4336 Card Collector(期望 dp 状态压缩)

    Problem Description In your childhood, people in the famous novel Water Margin, you will win an amaz ...

随机推荐

  1. <<C++ Primer>> 第四章 表达式

    术语表 第 4 章 表达式 算术转换(arithmetic conversion): 从一种算术类型转换成另一种算术类型.在二元运算符的上下文中,为了保留精度,算术转换通常把较小的类型转换成较大的类型 ...

  2. HDU-5201 The Monkey King

    题目描述 \(m\)个猴子分\(n\)个桃,要求第一个猴子的桃数严格大于其他猴子,问有多少种分法对\(1e9+7取模(\%1e9+7)\) Input \(1≤T≤25 ,1≤n,m≤100000\) ...

  3. 2017.9.23 C组比赛总结

    今天又回到了C组,感觉爽歪歪~分数终于是个三位数了,yes! 第一题,赛车.水!只用一个贪心就可以AC了. first,以速度为关键字小到大qsort一下... scond,枚举每一个赛车,看看它可以 ...

  4. array_chunk的用法和php操作大数据

    一.array_chunk() 函数 二.php操作大数据 1.在操作大数量数据与数据库交互时,比如插入大量数据,db就会报错,这时可以把原本的数据用array_chunk分隔成几个数组块,再循环插入 ...

  5. Codeforces893F_Subtree Minimum Query

    题意 给定一棵树和根,每个点有点权,强制在线询问\(x\)子树里离\(x\)距离不超过\(k\)的最小点权. 分析 权值线段树合并的套路题,dfs,以深度作为下标,点权作为值,对每个点建立一颗权值线段 ...

  6. logstash7.3版本不支持从redis集群中拉取数据

    filebeat可以把收集到的日志传输到redis集群中,但是logstash如何从从redis集群中拉取数据的呢? ogstash使用的是7.3版本 经过查看官网文档,发现logstash7.3版本 ...

  7. springmvc中的全注解模式

    1.贴在类上: @Controller表明其是一个控制器 2.贴在方法上: @requestMapping("/xxx"): 标明请求要访问的方法的资源路径,,需以/打头.其中省略 ...

  8. 2-Elasticsearch原理

    参考知乎大佬:https://zhuanlan.zhihu.com/p/62892586 一.倒排索引 倒排索引也叫反向索引,举个例子,理解一下.叫你背一首<静夜思>,立马可以背出,但是叫 ...

  9. docker之本地连接

    docker安装成功,之后我们需要连接进入docker中,这里罗列连接方式 1. Windows7 一般的虚拟ip地址: 192.168.99.100 查看ip地址: 1)  C:\Users\thi ...

  10. JS递归及二叉搜索树的移除节点

    1递归含义:在某时某刻某个条件下调用包含自己的函数 2:注意点:⑴递归过程中一定要加限制条件,要不然会陷入死循环: 死循环eg: function f(someP){ f(somP); } f(4); ...