pandas中的数据结构-DataFrame

DataFrame是什么?

表格型的数据结构

  • DataFrame 是一个表格型的数据类型,每列值类型可以不同
  • DataFrame 既有行索引、也有列索引
  • DataFrame 常用于表达二维数据,但可以表达多维数据

DataFrame创建

从字典创建

>>> import pandas as pd
>>> frame=pd.DataFrame(data)
>>> data={'name':['a','b','c'],'pay':[4000,5000,7000]}
>>> frame=pd.DataFrame(data)
>>> frame
name pay
0 a 4000
1 b 5000
2 c 7000
>>>

从二维ndarray创建

>>> import pandas as pd
>>> import numpy as np
>>> data=np.array([('a',4000),('b',6000),('c',9000)])
>>> frame=pd.DataFrame(data,index=range(1,4),columns=['name','pay'])
>>> frame
name pay
1 a 4000
2 b 6000
3 c 9000

DataFrame操作方法

查看数据集的头和尾

  • head( 1 ) # 查看第一行
  • tail(3) #
>>> frame
name pay
1 a 4000
2 b 6000
3 c 9000
>>> frame.head(1)
name pay
1 a 4000
>>> frame.tail(3)
name pay
1 a 4000
2 b 6000
3 c 9000

查看索引、列和y numpy 数组

  • .index
  • columns
  • values
  • describe()
>>> frame.index
RangeIndex(start=1, stop=4, step=1)
>>> frame.columns
Index(['name', 'pay'], dtype='object')
>>> frames.values
>>> frame.values
array([['a', '4000'],
['b', '6000'],
['c', '9000']], dtype=object)
>>> frame.describe()
name pay
count 3 3
unique 3 3
top b 9000
freq 1 1

修改索引index

>>> frame.index=['x','y','z']
>>> frame
name pay
x a 4000
y b 6000
z c 9000

修改列的标题

>>> frame.columns=['name1','pay2']
>>> frame
name1 pay2
x a 4000
y b 6000
z c 9000

修改特定位置元素

修改某一行

>>> frame.values[0]=['d',2]
>>> frame
name1 pay2
x d 2
y b 6000
z c 9000

修改某一行的值

>>> frame.values[1][1]=9000
>>> frame
name1 pay2
x d 2
y b 9000
z c 9000

选择数据

获取某行数据

>>> frame
name1 pay2
x d 2
y b 9000
z c 9000
>>> frame.loc['x']
name1 d
pay2 2
Name: x, dtype: object

按照列获取数据

>>> frame
name1 pay2
x d 2
y b 9000
z c 9000
>>> frame['name1']
x d
y b
z c
Name: name1, dtype: object
>>> frame.pay
1 4000
2 6000
3 9000
Name: pay, dtype: object
>>>

切片

>>> frame.iloc[:2,1]
1 4000
2 6000
Name: pay, dtype: object

修改

>>> frame['name']='admin'
>>> frame
name pay
1 admin 4000
2 admin 6000
3 admin 9000

删除

>>> frame
name pay
1 admin 4000
2 admin 6000
3 admin 9000
>>> del frame['name']
>>> frame
pay
1 4000
2 6000
3 9000

排序

对下标排序

sort_index () 在 指定轴上根据 索引 进行排序,默认升序

>>> b=pd.DataFrame(np.arange(12).reshape(3,4),index=['a','b','c'])
>>> b
0 1 2 3
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
>>> b.sort_index(ascending=False)#行坐标降序
0 1 2 3
c 8 9 10 11
b 4 5 6 7
a 0 1 2 3
>>> b
0 1 2 3
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
>>> b.sort_index(axis=1,ascending=False)#列坐标降序
3 2 1 0
a 3 2 1 0
b 7 6 5 4
c 11 10 9 8

对于值排序

>>> c=b.sort_values(2,ascending=False)
>>> c
0 1 2 3
c 8 9 10 11
b 4 5 6 7
a 0 1 2 3
>>> c=b.sort_values('a',axis=1,ascending=False)#按照axis=1
>>> c
3 2 1 0
a 3 2 1 0
b 7 6 5 4
c 11 10 9 8

表格运算

>>> a=pd.DataFrame(np.arange(12).reshape(3,4))
>>> b=pd.DataFrame(np.arange(12).reshape(3,4))
>>> a
0 1 2 3
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
>>> b
0 1 2 3
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
>>> a.add(b)
0 1 2 3
0 0 2 4 6
1 8 10 12 14
2 16 18 20 22
>>> a.sub(b)
0 1 2 3
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
>>> a.mul(b)
0 1 2 3
0 0 1 4 9
1 16 25 36 49
2 64 81 100 121
>>> a.div(b)
0 1 2 3
0 NaN 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0

比较运算

  • 比较运算只能比较相同索引的元素,不进行 补齐
  • 采用 > < >= <= == != 等符号进行的二元运算产生

    布尔对象

pandas中的数据结构-DataFrame的更多相关文章

  1. Python之Pandas中Series、DataFrame

    Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...

  2. Python之Pandas中Series、DataFrame实践

    Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...

  3. Pandas中Series和DataFrame的索引

    在对Series对象和DataFrame对象进行索引的时候要明确这么一个概念:是使用下标进行索引,还是使用关键字进行索引.比如list进行索引的时候使用的是下标,而dict索引的时候使用的是关键字. ...

  4. [Python] Pandas 中 Series 和 DataFrame 的用法笔记

    目录 1. Series对象 自定义元素的行标签 使用Series对象定义基于字典创建数据结构 2. DataFrame对象 自定义行标签和列标签 使用DataFrame对象可以基于字典创建数据结构 ...

  5. Pandas中Series与Dataframe的区别

    1. Series Series通俗来讲就是一维数组,索引(index)为每个元素的下标,值(value)为下标对应的值 例如: arr = ['Tom', 'Nancy', 'Jack', 'Ton ...

  6. pandas中series和dataframe之间的区别

    series结构有索引,和列名组成,如果没有,那么程序会自动赋名为None series的索引名具有唯一性,索引可以数字和字符,系统会自动将他们转化为一个类型object. dataframe由索引和 ...

  7. pandas中数据框DataFrame获取每一列最大值或最小值

    1.python中数据框求每列的最大值和最小值 df.min() df.max()

  8. Pandas中Series与Dataframe的初始化

    (一)Series初始化 1.通过列表,index自动生成 se = pd.Series(['Tom', 'Nancy', 'Jack', 'Tony']) print(se) 2.通过列表,指定in ...

  9. Pandas 数据结构Dataframe:基本概念及创建

    "二维数组"Dataframe:是一个表格型的数据结构,包含一组有序的列,其列的值类型可以是数值.字符串.布尔值等. Dataframe中的数据以一个或多个二维块存放,不是列表.字 ...

随机推荐

  1. Ajax异步传值总结

    Ajax异步传值 将数据从前台传向后台: 1:通过get方式,将参数在链接中,配合“?”进行传值. 实例: //前台传值方法 //触发该方法调用ajax function testAjax(yourD ...

  2. Misha and Permutations Summation

    A - Misha and Permutations Summation 首先这个 mod n! 因为数量级上的差别最多只会对康拓展开的第一项起作用所以这个题并不需要把 ord (p) 和 ord ( ...

  3. CentOS 6.5上的Tomcat启动报错问题

    最近在搭建虚拟机环境,装的是CentOSQL 6.5版本,然后装的OpenJDK1.7,在Apache下载了一个纯净的Tomcat放到虚拟机上启动报错了: 这里有两个错误: 1.第一个错误,APR的问 ...

  4. go GTK msys2

    1 下载安装msys2 MSYS2 (Minimal SYStem 2) 是一个MSYS的独立改写版本,主要用于 shell 命令行开发环境.同时它也是一个在Cygwin (POSIX 兼容性层) 和 ...

  5. Radio 单选框

    Radio 单选框 在一组备选项中进行单选 ¶基础用法 由于选项默认可见,不宜过多,若选项过多,建议使用 Select 选择器. 要使用 Radio 组件,只需要设置v-model绑定变量,选中意味着 ...

  6. 简单的python下载器

    最近在玩爬虫,有时候会爬下来很多感兴趣文件的连接. 如果自己手动下载它们的话工作量实在太大. 于是,简单写了个下载小脚本: import os, urllib2 os.chdir(r'd:') url ...

  7. Java学习之==>数组【array】

    一.定义数组 /** * 一维数组定义 * * 为数组插入元素 */ public void case1() { // 声明 int[] arr1; // 声明+初始化 int[] arr2 = ne ...

  8. harbor设置开机自启

    [root@bogon harbor]# vi /lib/systemd/system/harbor.service [Unit]Description=RedisAfter=network.targ ...

  9. 连接Xshell

    连xshell之前先进入[root@localhost zxj]# vim /etc/ssh/sshd_config, 将115行删除注释改为UseDNS  no, 保存重启sshd(xshell)的 ...

  10. 【ABAP系列】SAP ABAP 关于FUNCTION-POOL的理解

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[ABAP系列]SAP ABAP 关于FUNCT ...