pandas中的数据结构-DataFrame

DataFrame是什么?

表格型的数据结构

  • DataFrame 是一个表格型的数据类型,每列值类型可以不同
  • DataFrame 既有行索引、也有列索引
  • DataFrame 常用于表达二维数据,但可以表达多维数据

DataFrame创建

从字典创建

>>> import pandas as pd
>>> frame=pd.DataFrame(data)
>>> data={'name':['a','b','c'],'pay':[4000,5000,7000]}
>>> frame=pd.DataFrame(data)
>>> frame
name pay
0 a 4000
1 b 5000
2 c 7000
>>>

从二维ndarray创建

>>> import pandas as pd
>>> import numpy as np
>>> data=np.array([('a',4000),('b',6000),('c',9000)])
>>> frame=pd.DataFrame(data,index=range(1,4),columns=['name','pay'])
>>> frame
name pay
1 a 4000
2 b 6000
3 c 9000

DataFrame操作方法

查看数据集的头和尾

  • head( 1 ) # 查看第一行
  • tail(3) #
>>> frame
name pay
1 a 4000
2 b 6000
3 c 9000
>>> frame.head(1)
name pay
1 a 4000
>>> frame.tail(3)
name pay
1 a 4000
2 b 6000
3 c 9000

查看索引、列和y numpy 数组

  • .index
  • columns
  • values
  • describe()
>>> frame.index
RangeIndex(start=1, stop=4, step=1)
>>> frame.columns
Index(['name', 'pay'], dtype='object')
>>> frames.values
>>> frame.values
array([['a', '4000'],
['b', '6000'],
['c', '9000']], dtype=object)
>>> frame.describe()
name pay
count 3 3
unique 3 3
top b 9000
freq 1 1

修改索引index

>>> frame.index=['x','y','z']
>>> frame
name pay
x a 4000
y b 6000
z c 9000

修改列的标题

>>> frame.columns=['name1','pay2']
>>> frame
name1 pay2
x a 4000
y b 6000
z c 9000

修改特定位置元素

修改某一行

>>> frame.values[0]=['d',2]
>>> frame
name1 pay2
x d 2
y b 6000
z c 9000

修改某一行的值

>>> frame.values[1][1]=9000
>>> frame
name1 pay2
x d 2
y b 9000
z c 9000

选择数据

获取某行数据

>>> frame
name1 pay2
x d 2
y b 9000
z c 9000
>>> frame.loc['x']
name1 d
pay2 2
Name: x, dtype: object

按照列获取数据

>>> frame
name1 pay2
x d 2
y b 9000
z c 9000
>>> frame['name1']
x d
y b
z c
Name: name1, dtype: object
>>> frame.pay
1 4000
2 6000
3 9000
Name: pay, dtype: object
>>>

切片

>>> frame.iloc[:2,1]
1 4000
2 6000
Name: pay, dtype: object

修改

>>> frame['name']='admin'
>>> frame
name pay
1 admin 4000
2 admin 6000
3 admin 9000

删除

>>> frame
name pay
1 admin 4000
2 admin 6000
3 admin 9000
>>> del frame['name']
>>> frame
pay
1 4000
2 6000
3 9000

排序

对下标排序

sort_index () 在 指定轴上根据 索引 进行排序,默认升序

>>> b=pd.DataFrame(np.arange(12).reshape(3,4),index=['a','b','c'])
>>> b
0 1 2 3
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
>>> b.sort_index(ascending=False)#行坐标降序
0 1 2 3
c 8 9 10 11
b 4 5 6 7
a 0 1 2 3
>>> b
0 1 2 3
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
>>> b.sort_index(axis=1,ascending=False)#列坐标降序
3 2 1 0
a 3 2 1 0
b 7 6 5 4
c 11 10 9 8

对于值排序

>>> c=b.sort_values(2,ascending=False)
>>> c
0 1 2 3
c 8 9 10 11
b 4 5 6 7
a 0 1 2 3
>>> c=b.sort_values('a',axis=1,ascending=False)#按照axis=1
>>> c
3 2 1 0
a 3 2 1 0
b 7 6 5 4
c 11 10 9 8

表格运算

>>> a=pd.DataFrame(np.arange(12).reshape(3,4))
>>> b=pd.DataFrame(np.arange(12).reshape(3,4))
>>> a
0 1 2 3
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
>>> b
0 1 2 3
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
>>> a.add(b)
0 1 2 3
0 0 2 4 6
1 8 10 12 14
2 16 18 20 22
>>> a.sub(b)
0 1 2 3
0 0 0 0 0
1 0 0 0 0
2 0 0 0 0
>>> a.mul(b)
0 1 2 3
0 0 1 4 9
1 16 25 36 49
2 64 81 100 121
>>> a.div(b)
0 1 2 3
0 NaN 1.0 1.0 1.0
1 1.0 1.0 1.0 1.0
2 1.0 1.0 1.0 1.0

比较运算

  • 比较运算只能比较相同索引的元素,不进行 补齐
  • 采用 > < >= <= == != 等符号进行的二元运算产生

    布尔对象

pandas中的数据结构-DataFrame的更多相关文章

  1. Python之Pandas中Series、DataFrame

    Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...

  2. Python之Pandas中Series、DataFrame实践

    Python之Pandas中Series.DataFrame实践 1. pandas的数据结构Series 1.1 Series是一种类似于一维数组的对象,它由一组数据(各种NumPy数据类型)以及一 ...

  3. Pandas中Series和DataFrame的索引

    在对Series对象和DataFrame对象进行索引的时候要明确这么一个概念:是使用下标进行索引,还是使用关键字进行索引.比如list进行索引的时候使用的是下标,而dict索引的时候使用的是关键字. ...

  4. [Python] Pandas 中 Series 和 DataFrame 的用法笔记

    目录 1. Series对象 自定义元素的行标签 使用Series对象定义基于字典创建数据结构 2. DataFrame对象 自定义行标签和列标签 使用DataFrame对象可以基于字典创建数据结构 ...

  5. Pandas中Series与Dataframe的区别

    1. Series Series通俗来讲就是一维数组,索引(index)为每个元素的下标,值(value)为下标对应的值 例如: arr = ['Tom', 'Nancy', 'Jack', 'Ton ...

  6. pandas中series和dataframe之间的区别

    series结构有索引,和列名组成,如果没有,那么程序会自动赋名为None series的索引名具有唯一性,索引可以数字和字符,系统会自动将他们转化为一个类型object. dataframe由索引和 ...

  7. pandas中数据框DataFrame获取每一列最大值或最小值

    1.python中数据框求每列的最大值和最小值 df.min() df.max()

  8. Pandas中Series与Dataframe的初始化

    (一)Series初始化 1.通过列表,index自动生成 se = pd.Series(['Tom', 'Nancy', 'Jack', 'Tony']) print(se) 2.通过列表,指定in ...

  9. Pandas 数据结构Dataframe:基本概念及创建

    "二维数组"Dataframe:是一个表格型的数据结构,包含一组有序的列,其列的值类型可以是数值.字符串.布尔值等. Dataframe中的数据以一个或多个二维块存放,不是列表.字 ...

随机推荐

  1. BZOJ 1488 Luogu P4727 [HNOI2009]图的同构 (Burnside引理、组合计数)

    题目链接 (Luogu) https://www.luogu.org/problem/P4727 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.ph ...

  2. BatchNormalization、LayerNormalization、InstanceNorm、GroupNorm、SwitchableNorm总结

    https://blog.csdn.net/liuxiao214/article/details/81037416 http://www.dataguru.cn/article-13032-1.htm ...

  3. [CSP-S模拟测试]:统计(树状数组+乱搞)

    题目传送门(内部题120) 输入格式 第一行,两个正整数$n,m$. 第二行,$n$个正整数$a_1,a_2,...,a_n$,保证$1\leqslant a_i\leqslant n$,可能存在相同 ...

  4. VMware与Centos系统

    今日任务 1.Linux发行版的选择 2.vmware创建一个虚拟机(centos) 3.安装配置centos7 4.xshell配置连接虚拟机(centos) 选择性 pc可以选择 -纯系统 Lin ...

  5. defineProperty和defineProperties介绍

    v-model 实现的原理 angular 是 mvc 的实现原理,ng-model 是靠脏值检测实现的 脏值检测:for 循环一个个对比 vue 靠的是数据劫持 和 发布者,订阅者模式 数据劫持:O ...

  6. (组件的)状态(state)和属性(props)之间有何不同

    State 是一种数据结构,用于组件挂载时所需数据的默认值.State 可能会随着时间的推移而发生突变,但多数时候是作为用户事件行为的结果.Props(properties 的简写)则是组件的配置.p ...

  7. Android 多分辨率与不同语言适配

    一.适配不同国家语言 智能手机系统设置里各国语言的选项,然后我们项目里可以通过资源目录实现适配语言.我们知道工程的根目录有个res/的目录,res/下有一个资源类型的目录,其中有个values/str ...

  8. 方差分析(python代码实现)

    python机器学习-乳腺癌细胞挖掘(欢迎关注博主主页,学习python视频资源,还有大量免费python经典文章) https://study.163.com/course/introduction ...

  9. Other | 十招教你找到海量PPT模板

    转载自:https://www.douban.com/note/330962457/ 问:PPT模板是什么含义? 答: 先假定你们要的是这种网上到处泛滥成灾的主题PPT吧,下面请耐心看到最后,秋叶老师 ...

  10. CSS二级菜单

    0.需求:当鼠标hover到按钮上时,出现下拉菜单导航条. 1.问题拆解: (1)HTML应该如何组织比较方便合理 因为题中要求下拉菜单位于按钮的正下方,可以使用列表<li>中嵌套无序列表 ...