Time limit 1000 ms

Memory limit 131072 kB

OS Windows

中文题意

给一张n个点的无向完全图(输入一个n就完事了),每个点标号为1n,每条边的边权为它的两个端点的标号做按位与。现在要求这个图的最小生成树,输出这棵树以1为根时2n总共n-1个点的父亲节点的标号(为啥不是母亲)。要求在该树边权和最小的前提下,输出的数据字典序最小。

解题思路

以1为根,那就把1固定下来吧。

对于所有偶数点,肯定要以1为父亲,因为首先边权为0,其次因为字典序最小的要求,1是它们可以连到的编号最小的父亲。

对于所有奇数点,我们肯定希望它连接到父亲的边权是0,那么它和父亲的二进制位就不能有同时为1的地方。又因为字典序最小的要求,它能连接到的边权为0、标号最小的父亲是哪位呢?我们想到了lowbit,我们可以将该奇数点编号取反,然后强行将最高位符号位置0,再求lowbit,就得到了我们希望它连接的父亲。换句话说,一个奇数点x的父亲应该是

lowbit(0x7fffffff&(~x))

比如对于13号点,二进制为1101,它的父亲就应该是0010。还没完,假设总共有7个点,那么7号点的父亲是谁呢?按照上面的分析,应该是8号点,但是没有8号点,而且因为7的二进制是0111,无论连到其他哪个点上边权都不为0,所以要让权值最小,我们只能把这种理论父亲不存在的点连接到1号点。

源代码

#include<stdio.h>

int T;
int n;
long long sum;
int fa[200010];
inline int lowbit(int x){return x&-x;}
int main()
{
scanf("%d",&T);
while(T--)
{
sum=0;
scanf("%d",&n);
for(int i=2;i<=n;i+=2) fa[i]=1;
for(int i=3;i<=n;i+=2)
{
if(lowbit(i)==i) continue;
int lowzero=lowbit((~i)&0x7fffffff);//求理论父亲
if(lowzero>n) sum++,fa[i]=1;//理论父亲不存在
else fa[i]=lowzero;
}
printf("%d\n%d",sum,fa[2]);//这题卡PE艹
for(int i=3;i<=n;i++)
printf(" %d",fa[i]);
puts("");
}
return 0;
}

HDU 6614 AND Minimum Spanning的更多相关文章

  1. 多校 HDU - 6614 AND Minimum Spanning Tree (二进制)

    传送门 AND Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 ...

  2. 【HDU 4408】Minimum Spanning Tree(最小生成树计数)

    Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...

  3. HDU 4408 Minimum Spanning Tree 最小生成树计数

    Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  4. hdu 4408 Minimum Spanning Tree

    Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...

  5. 数据结构与算法分析–Minimum Spanning Tree(最小生成树)

    给定一个无向图,如果他的某个子图中,任意两个顶点都能互相连通并且是一棵树,那么这棵树就叫做生成树(spanning tree). 如果边上有权值,那么使得边权和最小的生成树叫做最小生成树(MST,Mi ...

  6. Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST

    E. Minimum spanning tree for each edge   Connected undirected weighted graph without self-loops and ...

  7. CF# Educational Codeforces Round 3 E. Minimum spanning tree for each edge

    E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...

  8. Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值

    E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...

  9. MST(Kruskal’s Minimum Spanning Tree Algorithm)

    You may refer to the main idea of MST in graph theory. http://en.wikipedia.org/wiki/Minimum_spanning ...

随机推荐

  1. Discrete Mathematics and Its Applications | 1 CHAPTER The Foundations: Logic and Proofs | 1.2 Applications of Propositional Logic

    Translating English Sentences System Specifications Boolean Searches Logic Puzzles Logic Circuits

  2. 【Windows Server存储】MBR和GPT分区表

    MBR和GPT分区表 分区表用于引导操作系统 master boot record(MBR)于1983年首次在PC上推出 最大4个主分区 2太空间 GUID Partition Table(GPT), ...

  3. java.lang.NoSuchMethodError: org.apache.spark.internal.Logging.$init$(Lorg/apache/spark/internal/Logging;)V

    1.sparkML的版本不对应 请参考官网找到对于版本, 比如我的 spark2.3.3          spark MLlib 也是2.3.3

  4. Keil共存的方法 - Keil MDK兼容Keil C51,实操可行

    记录一下成功使Keil MDK和Keil C51共存的过程! 之前一直用Keil C51开发,最近需要用到ARM9内核的IC,就需要Keil C51和Keil MDK共存.看了一下网上几个教程,方法大 ...

  5. P1754球迷购票问题

    这是一道动态规划题,其实也是个数论题. 有n人拿50,有n人拿100买票,必须让50元的人买,不然无法找零钱,问最多有几种方案可以每一次都买票成功.这个题首先令人想到搜索,但是随即发现dp是正解,于是 ...

  6. uboot第二阶段分析1

    一. uboot第二阶段初识 1.1. uboot第二阶段应该做什么 a. 概括来讲uboot第一阶段主要就是初始化了SoC内部的一些部件(譬如看门狗.时钟),然后初始化DDR并且完成重定位. b.  ...

  7. Lock和synchronized的区别和使用(转发)

    今天看了并发实践这本书的ReentantLock这章,感觉对ReentantLock还是不够熟悉,有许多疑问,所有在网上找了很多文章看了一下,总体说的不够详细,重点和焦点问题没有谈到,但这篇文章相当不 ...

  8. Laravel 学习笔记之数据库操作——Eloquent ORM

    1. 时间戳 默认情况下在使用ORM操作数据库进行添加.修改数据时, created_at 和 updated_at列会自动存在于数据表中,并显示的是 ‘2017’格式,如果想以 Unix时间戳格式存 ...

  9. 【问题解决方案】Centos操作文件vim-No write since last change (add ! to override)

    参考链接 CSDN:Centos 7 操作文件No write since last change (add ! to override) 问题描述: :q或者:wq退出失败,显示如No write ...

  10. JAVA中自定义properties文件介绍

    Gradle中的使用 1. 使用gradle.properties buid.gradle 和 gradle.properties可以项目使用,在同一个项目中,build.gradle可以直接获取其同 ...