Drainage Ditches
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 85250   Accepted: 33164

Description

Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 
Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 
Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 

Input

The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond.

Sample Input

5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10

Sample Output

50

Source

题意:最大流问题
代码:
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<vector>
#define MAX 205
#define INF 0x3f3f3f3f
#define pb push_back
using namespace std;
struct edge{
int to,cap,rev;
edge(){}
edge(int to,int cap,int rev):to(to),cap(cap),rev(rev){}
};
vector<edge>G[MAX];
bool used[MAX];
void add_edge(int from,int to,int cap)
{
G[from].pb(edge(to,cap,G[to].size()));
G[to].pb(edge(from,,G[from].size()-));
}
int dfs(int v,int t,int f)
{
if(v==t)return f;
used[v]=true;
for(int i=;i<G[v].size();i++)
{
edge &e=G[v][i];
//cout<<e.to<<endl;
if(!used[e.to]&&e.cap>)
{
int d=dfs(e.to,t,min(f,e.cap));
if(d>)
{
e.cap-=d;
G[e.to][e.rev].cap+=d;
return d;
}
}
}
return ;
}
int max_flow(int s,int t)
{
int flow=;
for(;;)
{
memset(used,,sizeof(used));
int f=dfs(s,t,INF);
if(f==)
return flow;
flow+=f;
}
}
int main()
{
int n,m;
while(cin>>n>>m){
for(int i=;i<n;i++)
G[i].clear();
for(int i=;i<n;i++)
{
int u,v,cap;
cin>>u>>v>>cap;
add_edge(u,v,cap);
}
cout<<max_flow(,m)<<endl;
}
}

Ford_Fulkerson

#include<string.h>
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
const int maxn = ;
const int INF = 0x3f3f3f3f; struct Edge
{
int from,to,cap,flow;
Edge(){}
Edge(int from,int to,int cap,int flow):from(from),to(to),cap(cap),flow(flow){}
}; struct Dinic
{
int n,m,s,t; //结点数,边数(包括反向弧),源点与汇点编号
vector<Edge> edges; //边表 edges[e]和edges[e^1]互为反向弧
vector<int> G[maxn]; //邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
bool vis[maxn]; //BFS使用,标记一个节点是否被遍历过
int d[maxn]; //d[i]表从起点s到i点的距离(层次)
int cur[maxn]; //cur[i]表当前正访问i节点的第cur[i]条弧 void init(int n,int s,int t)
{
this->n=n,this->s=s,this->t=t;
for(int i=;i<=n;i++) G[i].clear();
edges.clear();
} void AddEdge(int from,int to,int cap)
{
edges.push_back( Edge(from,to,cap,) );
edges.push_back( Edge(to,from,,) );
m = edges.size();
G[from].push_back(m-);
G[to].push_back(m-);
} bool BFS()
{
memset(vis,,sizeof(vis));
queue<int> Q;//用来保存节点编号的
Q.push(s);
d[s]=;
vis[s]=true;
while(!Q.empty())
{
int x=Q.front(); Q.pop();
for(int i=; i<G[x].size(); i++)
{
Edge& e=edges[G[x][i]];
if(!vis[e.to] && e.cap>e.flow)
{
vis[e.to]=true;
d[e.to] = d[x]+;
Q.push(e.to);
}
}
}
return vis[t];
} //a表示从s到x目前为止所有弧的最小残量
//flow表示从x到t的最小残量
int DFS(int x,int a)
{
if(x==t || a==)return a;
int flow=,f;//flow用来记录从x到t的最小残量
for(int& i=cur[x]; i<G[x].size(); i++)
{
Edge& e=edges[G[x][i]];
if(d[x]+==d[e.to] && (f=DFS( e.to,min(a,e.cap-e.flow) ) )> )
{
e.flow +=f;
edges[G[x][i]^].flow -=f;
flow += f;
a -= f;
if(a==) break;
}
}
if(!flow) d[x] = -;///炸点优化
return flow;
} int Maxflow()
{
int flow=;
while(BFS())
{
memset(cur,,sizeof(cur));
flow += DFS(s,INF);
}
return flow;
}
}Di;
int main()
{
int n,m; while(cin>>n>>m){
Di.init(n,,m);
for(int i=;i<n;i++)
{
int v,u,rap;
cin>>u>>v>>rap;
Di.AddEdge(u,v,rap);
}
cout<<Di.Maxflow()<<endl;
}
}

Dinic

poj Drainage Ditches(最大流入门)的更多相关文章

  1. poj 1273 Drainage Ditches 最大流入门题

    题目链接:http://poj.org/problem?id=1273 Every time it rains on Farmer John's fields, a pond forms over B ...

  2. poj 1273 Drainage Ditches(最大流)

    http://poj.org/problem?id=1273 Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Subm ...

  3. POJ 1273 - Drainage Ditches - [最大流模板题] - [EK算法模板][Dinic算法模板 - 邻接表型]

    题目链接:http://poj.org/problem?id=1273 Time Limit: 1000MS Memory Limit: 10000K Description Every time i ...

  4. (网络流 模板 Edmonds-Karp)Drainage Ditches --POJ --1273

    链接: http://poj.org/problem?id=1273 Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total ...

  5. POJ 1273 Drainage Ditches (网络最大流)

    http://poj.org/problem? id=1273 Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Sub ...

  6. POJ 1273 Drainage Ditches题解——S.B.S.

    Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 67823   Accepted: 2620 ...

  7. POJ 1273 Drainage Ditches

    Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 67387   Accepted: 2603 ...

  8. POJ 1273 Drainage Ditches -dinic

    dinic版本 感觉dinic算法好帅,比Edmonds-Karp算法不知高到哪里去了 Description Every time it rains on Farmer John's fields, ...

  9. Drainage Ditches 分类: POJ 图论 2015-07-29 15:01 7人阅读 评论(0) 收藏

    Drainage Ditches Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 62016 Accepted: 23808 De ...

随机推荐

  1. 安装weblogic中间件_test

    小编对他还不是很了解,等了解的时候小编吧这句话删除(注意) 如果过程中有问题的话请联系 QQ:291562721 weblogic是ORACLE商家,他是一门中间件服务: 因为一些安全的原因,扫描发现 ...

  2. Saying goodbye to Flash in Chrome一代人的回忆FLASH

    一早打开chorme就推送了这条FLASH将在2020年推出CHORME 想起了当年风靡全球的flash热潮,游戏视频动画,都由flash运行,最熟悉的童年游戏4399,小时候的天堂. 说起这个不得不 ...

  3. Linux拷贝、移动、删除

    cp:拷贝文件或文件夹(copy) - cp original_filename copy_filename(在当前目录生成拷贝文件,并改名为copy_filename) - cp original_ ...

  4. HTML5中canvas与SVG有什么区别

    SVG SVG 是一种使用 XML 描述 2D 图形的语言,它基于XML也就是我们可以为某个元素附加JavaScript事件处理器,如果SVG 对象的属性发生变化,那么浏览器能够自动重现图形. Can ...

  5. Opencv识别图中人脸

    #!/usr/bin/python #coding=utf-8 # 识别图片中的人脸 import face_recognition jobs_image = face_recognition.loa ...

  6. CMS(1)

    一周后,终于可以学习到可爱的渗透了哈哈哈.除了大哥给的CMS(其实可以算是只是在文件上传的时候了解一下),但是对于一个CMS完整的渗透思路,我还是不懂.首先感谢章老师给我的CMS源码哈哈哈,在我的日记 ...

  7. Vue-cli3 环境的搭建

    Vue-cli3 环境的搭建 准备 浏览器插件:Vue.js devtools VsCode 和 VsCode 插件 WebStorm Nodejs vue-cli git 起飞 安装vue-cli3 ...

  8. HTML基础 内联样式改进 三毛语录

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  9. Center os6.5 mysql

    1 # yum -y install mysql-server mysql  mysql-dev 2 启动mysql   # service mysqld start 3 为root用户配置一个密码 ...

  10. struts2结果跳转和参数获取

    一.结果跳转方式 <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE struts PUBLIC ...