题面

给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权。其中lastans是上一个询问的答案,初始为0,即第一个询问的u是明文。

分析

第i棵主席树存储dfs序(dfn)为i的节点到根的链上序列,按dfn更新

查询用dfn[x]+dfn[y]-dfn[lca(x,y)]-dfn[fa[lca(x,y)]](指对应的主席树相减 )

不能直接减去dfn[lca(x,y)]*2,因为lca那个点也算,要少减一次

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define maxn 100005
#define maxlogn 20
using namespace std;
struct node{
#ifdef DEBUG
int l;
int r;
#endif
int ls;
int rs;
int cnt;
}tree[maxn*maxlogn];
int root[maxn];
int ptr;
void push_up(int x){
tree[x].cnt=tree[tree[x].ls].cnt+tree[tree[x].rs].cnt;
}
void update(int &x,int last,int upos,int l,int r){
x=++ptr;
tree[x]=tree[last];
#ifdef DEBUG
tree[x].l=l;
tree[x].r=r;
#endif
if(l==r){
tree[x].cnt++;
return;
}
int mid=(l+r)>>1;
if(upos<=mid) update(tree[x].ls,tree[last].ls,upos,l,mid);
else update(tree[x].rs,tree[last].rs,upos,mid+1,r);
push_up(x);
}
int query(int x,int y,int lc,int lcfa,int k,int l,int r){
if(l==r) return l;
int mid=(l+r)>>1;
int lcnt=tree[tree[x].ls].cnt+tree[tree[y].ls].cnt-tree[tree[lc].ls].cnt-tree[tree[lcfa].ls].cnt;
if(k<=lcnt) return query(tree[x].ls,tree[y].ls,tree[lc].ls,tree[lcfa].ls,k,l,mid);
else return query(tree[x].rs,tree[y].rs,tree[lc].rs,tree[lcfa].rs,k-lcnt,mid+1,r);
} struct edge{
int from;
int to;
int next;
}E[maxn<<1];
int sz=1;
int head[maxn];
void add_edge(int u,int v){
sz++;
E[sz].from=u;
E[sz].to=v;
E[sz].next=head[u];
head[u]=sz;
} int tim;
int logn;
int dfn[maxn];
int hash_dfn[maxn];
int anc[maxn][maxlogn];
int deep[maxn];
void dfs(int x,int fa){
dfn[x]=++tim;
hash_dfn[tim]=x;
anc[x][0]=fa;
deep[x]=deep[fa]+1;
for(int i=1;i<=logn;i++) anc[x][i]=anc[anc[x][i-1]][i-1];
for(int i=head[x];i;i=E[i].next){
int y=E[i].to;
if(y!=fa){
dfs(y,x);
}
}
}
int lca(int x,int y){
if(deep[x]<deep[y]) swap(x,y);
for(int i=logn;i>=0;i--){
if(deep[anc[x][i]]>=deep[y]){
x=anc[x][i];
}
}
if(x==y) return x;
for(int i=logn;i>=0;i--){
if(anc[x][i]!=anc[y][i]){
x=anc[x][i];
y=anc[y][i];
}
}
return anc[x][0];
} int n,m;
int dis_cnt;
int val[maxn];
int tmp[maxn];
int main(){
int u,v,k;
scanf("%d %d",&n,&m);
int lastans=0;
logn=log2(n);
for(int i=1;i<=n;i++){
scanf("%d",&val[i]);
tmp[i]=val[i];
}
sort(tmp+1,tmp+1+n);
dis_cnt=unique(tmp+1,tmp+1+n)-tmp-1;
for(int i=1;i<=n;i++) val[i]=lower_bound(tmp+1,tmp+1+dis_cnt,val[i])-tmp;
for(int i=1;i<n;i++){
scanf("%d %d",&u,&v);
add_edge(u,v);
add_edge(v,u);
}
dfs(1,0);
for(int i=1;i<=n;i++){
int x=hash_dfn[i],fa=anc[x][0];
update(root[dfn[x]],root[dfn[fa]],val[x],1,dis_cnt);
}
for(int i=1;i<=m;i++){
scanf("%d %d %d",&u,&v,&k);
u^=lastans;
int lc=lca(u,v);
int lcfa=anc[lc][0];
lastans=tmp[query(root[dfn[u]],root[dfn[v]],root[dfn[lc]],root[dfn[lcfa]],k,1,dis_cnt)];
printf("%d\n",lastans);
}
}

[BZOJ2588]Count on a tree(LCA+主席树)的更多相关文章

  1. [Bzoj2588]Count on a tree(主席树+LCA)

    Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始 ...

  2. 【bzoj2588/P2633】count on a tree —— LCA + 主席树

    (以下是luogu题面) 题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问 ...

  3. BZOJ 2588: Spoj 10628. Count on a tree( LCA + 主席树 )

    Orz..跑得还挺快的#10 自从会树链剖分后LCA就没写过倍增了... 这道题用可持久化线段树..点x的线段树表示ROOT到x的这条路径上的权值线段树 ----------------------- ...

  4. 【BZOJ2588】Count On a Tree(主席树)

    [BZOJ2588]Count On a Tree(主席树) 题面 题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第 ...

  5. Count on a tree 树上主席树

    Count on a tree 树上主席树 给\(n\)个树,每个点有点权,每次询问\(u,v\)路径上第\(k\)小点权,强制在线 求解区间静态第\(k\)小即用主席树. 树上主席树类似于区间上主席 ...

  6. BZOJ2588 SPOJ10628 Count on a tree 【主席树】

    BZOJ2588 Count on a tree 题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中l ...

  7. 洛谷P2633 Count on a tree(主席树,倍增LCA)

    洛谷题目传送门 题目大意 就是给你一棵树,每个点都有点权,每次任意询问两点间路径上点权第k小的值(强制在线). 思路分析 第k小......又是主席树了.但这次变成树了,无法直接维护前缀和. 又是树上 ...

  8. 洛谷P2633 Count on a tree(主席树,倍增LCA,树上差分)

    洛谷题目传送门 题目大意 就是给你一棵树,每个点都有点权,每次任意询问两点间路径上点权第k小的值(强制在线). 思路分析 第k小......又是主席树了.但这次变成树了,无法直接维护前缀和. 又是树上 ...

  9. 【bzoj2588】Spoj 10628. Count on a tree 离散化+主席树

    题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始为0,即第一个 ...

随机推荐

  1. 前端之JavaScript:JS之DOM对象二

    继续JS之DOM对象二 前面在JS之DOM中我们知道了属性操作,下面我们来了解一下节点操作.很重要!! 一.节点操作 创建节点:var ele_a = document.createElement(' ...

  2. Tymeleaf模板引擎背景图片路径书写方式

    <body style="background: url(../static/assets/img/bg-so-white.png);" th:style="'ba ...

  3. RouterOS基础安装配置

    安装 光盘安装 载入光盘,按"A"全选按"I"进行安装,然后提示不否用旧的配置,按"N"全新安装,警告时按"Y"确定 安 ...

  4. SpringBoot实体类对象和json格式的转化

    1.引入maven依赖 <dependency> <groupId>com.alibaba</groupId> <artifactId>fastjson ...

  5. CSS盒子模型(框模型)

     一.如何理解盒子模型  盒子模型(框模型)是css部分非常重要的一部分知识,CSS在处理网页的时候,认为每个元素都处在一个不可见的盒子中.盒子模型的构想,把所有的元素都想象成盒子,那么对网页进行布局 ...

  6. mybatis配eclise模板,mybatis快速生成模板

    eclipse中mybatis得mapper文件不提示(mybatis-3-mapper.dtd,mybatis-3-config.dtd) 1.下载该文件到你的硬盘文件夹下 2.windows -- ...

  7. ckeditor直接粘贴图片实现

    自动导入Word图片,或者粘贴Word内容时自动上传所有的图片,并且最终保留Word样式,这应该是Web编辑器里面最基本的一个需求功能了.一般情况下我们将Word内容粘贴到Web编辑器(富文本编辑器) ...

  8. Codeforces Round #587 (Div. 3) F. Wi-Fi(单调队列优化DP)

    题目:https://codeforces.com/contest/1216/problem/F 题意:一排有n个位置,我要让所有点都能联网,我有两种方式联网,第一种,我直接让当前点联网,花费为i,第 ...

  9. BM板子

    BM线性递推 玄学玩意 struct LinearRecurrence { using int64 = long long; using vec = std::vector<int64>; ...

  10. loadrunner常用函数整理

    1.int web_reg_save_param("参数名","LB=左边界","RB=右边界",LAST);   //注册函数,在参数值出 ...