Transformation

Time Limit: 15000/8000 MS (Java/Others)    Memory Limit: 65535/65536 K (Java/Others)
Total Submission(s): 10082    Accepted Submission(s): 2609

Problem Description
Yuanfang is puzzled with the question below: 
There are n integers, a1, a2, …, an. The initial values of them are 0. There are four kinds of operations.
Operation 1: Add c to each number between ax and ay inclusive. In other words, do transformation ak<---ak+c, k = x,x+1,…,y.
Operation 2: Multiply c to each number between ax and ay inclusive. In other words, do transformation ak<---ak×c, k = x,x+1,…,y.
Operation 3: Change the numbers between ax and ay to c, inclusive. In other words, do transformation ak<---c, k = x,x+1,…,y.
Operation 4: Get the sum of p power among the numbers between ax and ay inclusive. In other words, get the result of axp+ax+1p+…+ay p.
Yuanfang has no idea of how to do it. So he wants to ask you to help him. 
 
Input
There are no more than 10 test cases.
For each case, the first line contains two numbers n and m, meaning that there are n integers and m operations. 1 <= n, m <= 100,000.
Each the following m lines contains an operation. Operation 1 to 3 is in this format: "1 x y c" or "2 x y c" or "3 x y c". Operation 4 is in this format: "4 x y p". (1 <= x <= y <= n, 1 <= c <= 10,000, 1 <= p <= 3)
The input ends with 0 0.
 
Output
For each operation 4, output a single integer in one line representing the result. The answer may be quite large. You just need to calculate the remainder of the answer when divided by 10007.
 
Sample Input
5 5
3 3 5 7
1 2 4 4
4 1 5 2
2 2 5 8
4 3 5 3
0 0
 
Sample Output
307
7489
 
Source
 

题解

这道题有三种询问:set , add , mul。所以lazy标记要有三个,如果三个标记同时出现的处理方法——当更新set操作时,就把add标记和mul标记全部取消;当更新mul操作时,如果当前节点add标记存在,就把add标记改为:add * mul。这样的话就可以在PushDown()操作中先执行set,然后mul,最后add。

C++代码一

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int maxn = ;
#define left v<<1
#define right v<<1|1
#define mod 10007
struct node
{
int l ,r , value ;
int eq , add , mul ;
}tree[maxn<<];
void build(int l , int r , int v)
{
tree[v].l = l ;
tree[v].r = r ;
tree[v].add = ; tree[v].mul = ;tree[v].eq = - ;
if(l == r)
{tree[v].eq = ; return ;}
int mid = (l + r) >> ;
build(l , mid , left) ;
build(mid + , r , right) ;
}
void push_down(int v)
{
if(tree[v].l == tree[v].r)return ;
if(tree[v].eq != -)
{
tree[left].eq = tree[right].eq = tree[v].eq ;
tree[left].add = tree[right].add = ;
tree[left].mul = tree[right].mul = ;
tree[v].eq = -;
return ;
}
if(tree[v].mul != )
{
if(tree[left].eq != -)
tree[left].eq = (tree[left].eq*tree[v].mul)%mod ;
else
{
push_down(left) ;
tree[left].mul = (tree[left].mul*tree[v].mul)%mod ;
}
if(tree[right].eq != -)
tree[right].eq = (tree[right].eq*tree[v].mul)%mod ;
else
{
push_down(right) ;
tree[right].mul = (tree[right].mul*tree[v].mul)%mod ;
}
tree[v].mul = ;
}
if(tree[v].add)
{
if(tree[left].eq != -)
tree[left].eq = (tree[left].eq + tree[v].add)%mod ;
else
{
push_down(left) ;
tree[left].add = (tree[left].add + tree[v].add)%mod ;
}
if(tree[right].eq != -)
tree[right].eq = (tree[right].eq + tree[v].add)%mod ;
else
{
push_down(right) ;
tree[right].add = (tree[right].add + tree[v].add)%mod ;
}
tree[v].add = ;
}
}
void update(int l , int r , int v , int op , int c)
{
if(l <= tree[v].l && tree[v].r <= r)
{
if(op == )
{
tree[v].add = ;tree[v].mul = ;
tree[v].eq = c ;
return ;
}
if(tree[v].eq != -)
{
if(op == )tree[v].eq = (tree[v].eq + c)%mod ;
else tree[v].eq = (tree[v].eq*c)%mod ;
}
else
{
push_down(v) ;
if(op == )tree[v].add = (tree[v].add + c)%mod ;
else tree[v].mul = (tree[v].mul*c)%mod ;
}
return ;
}
push_down(v) ;
int mid = (tree[v].l + tree[v].r) >> ;
if(l <= mid)update(l , r ,left , op , c) ;
if(r > mid)update(l , r , right , op , c) ;
}
int query(int l , int r , int v , int q)
{
if(tree[v].l >= l && tree[v].r <= r && tree[v].eq != -)
{
int ans = ;
for(int i = ;i <= q;i++)
ans = (ans * tree[v].eq)%mod ;
return (ans*((tree[v].r - tree[v].l + )%mod))%mod ;
}
push_down(v) ;
int mid = (tree[v].l + tree[v].r) >> ;
if(l > mid)return query(l , r , right, q) ;
else if(r <= mid)return query(l , r ,left ,q) ;
else return (query(l , mid , left , q) + query(mid + , r , right , q))%mod ;
}
int main()
{
//freopen("in.txt" ,"r" , stdin) ;
int n , m ;
while(scanf("%d%d" , &n , &m) &&(n+m))
{
int op , x , y , c;
build( , n , ) ;
while(m--)
{
scanf("%d%d%d%d" , &op , &x , &y , &c) ;
if(op == )
printf("%d\n" , (query(x, y , , c)%mod)) ;
else update(x , y , , op , c) ;
}
}
return ;
}

C++代码二

解释

  平方和这样来推:(a + c)2 = a2 + c2 + 2ac  , 即sum2[rt] = sum2[rt] + (r - l + 1) * c * c + 2 * sum1[rt] * c;

  立方和这样推:(a + c)3 = a3 + c3 + 3a(a2 + ac) , 即sum3[rt] = sum3[rt] + (r - l + 1) * c * c * c + 3 * c * (sum2[rt] + sum1[rt] * c);

  几个注意点:add标记取消的时候是置0,mul标记取消的时候是置1;在PushDown()中也也要注意取消标记,如set操作中取消add和mul,mul操作中更新add; 在add操作中要注意sum3 , sum2 , sum1的先后顺序,一定是先sum3 , 然后sum2 , 最后sum1; int容易爆,还是用LL要保险一点; 最后就是运算较多,不要漏掉东西。

当然这种方法有取巧的成分

#include <iostream>
#include <cstdio>
#include <vector>
#include <cmath>
#include <string>
#include <string.h>
#include <algorithm>
using namespace std;
#define LL __int64
typedef long long ll;
#define eps 1e-8
#define INF INT_MAX
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
const int MOD = ;
const int maxn = + ;
const int N = ;
ll add[maxn << ] , set[maxn << ] , mul[maxn << ];
ll sum1[maxn << ] , sum2[maxn << ] , sum3[maxn << ];
void PushUp(int rt)
{
sum1[rt] = (sum1[rt << ] + sum1[rt << | ]) % MOD;
sum2[rt] = (sum2[rt << ] + sum2[rt << | ]) % MOD;
sum3[rt] = (sum3[rt << ] + sum3[rt << | ]) % MOD;
}
void build(int l , int r , int rt)
{
add[rt] = set[rt] = ;
mul[rt] = ;
if(l == r) {
sum1[rt] = sum2[rt] = sum3[rt] = ;
return;
}
int m = (l + r) >> ;
build(lson);
build(rson);
PushUp(rt);
}
void PushDown(int rt , int len)
{
if(set[rt]) {
set[rt << ] = set[rt << | ] = set[rt];
add[rt << ] = add[rt << | ] = ; //注意这个也要下放
mul[rt << ] = mul[rt << | ] = ;
ll tmp = ((set[rt] * set[rt]) % MOD) * set[rt] % MOD;
sum1[rt << ] = ((len - (len >> )) % MOD) * (set[rt] % MOD) % MOD;
sum1[rt << | ] = ((len >> ) % MOD) * (set[rt] % MOD) % MOD;
sum2[rt << ] = ((len - (len >> )) % MOD) * ((set[rt] * set[rt]) % MOD) % MOD;
sum2[rt << | ] = ((len >> ) % MOD) * ((set[rt] * set[rt]) % MOD) % MOD;
sum3[rt << ] = ((len - (len >> )) % MOD) * tmp % MOD;
sum3[rt << | ] = ((len >> ) % MOD) * tmp % MOD;
set[rt] = ;
}
if(mul[rt] != ) { //这个就是mul[rt] != 1 , 当时我这里没注意所以TLE了
mul[rt << ] = (mul[rt << ] * mul[rt]) % MOD;
mul[rt << | ] = (mul[rt << | ] * mul[rt]) % MOD;
if(add[rt << ]) //注意这个也要下放
add[rt << ] = (add[rt << ] * mul[rt]) % MOD;
if(add[rt << | ])
add[rt << | ] = (add[rt << | ] * mul[rt]) % MOD;
ll tmp = (((mul[rt] * mul[rt]) % MOD * mul[rt]) % MOD);
sum1[rt << ] = (sum1[rt << ] * mul[rt]) % MOD;
sum1[rt << | ] = (sum1[rt << | ] * mul[rt]) % MOD;
sum2[rt << ] = (sum2[rt << ] % MOD) * ((mul[rt] * mul[rt]) % MOD) % MOD;
sum2[rt << | ] = (sum2[rt << | ] % MOD) * ((mul[rt] * mul[rt]) % MOD) % MOD;
sum3[rt << ] = (sum3[rt << ] % MOD) * tmp % MOD;
sum3[rt << | ] = (sum3[rt << | ] % MOD) * tmp % MOD;
mul[rt] = ;
}
if(add[rt]) {
add[rt << ] += add[rt]; //add是+= , mul是*=
add[rt << | ] += add[rt];
ll tmp = (add[rt] * add[rt] % MOD) * add[rt] % MOD; //注意sum3 , sum2 , sum1的先后顺序
sum3[rt << ] = (sum3[rt << ] + (tmp * (len - (len >> )) % MOD) + * add[rt] * ((sum2[rt << ] + sum1[rt << ] * add[rt]) % MOD)) % MOD;
sum3[rt << | ] = (sum3[rt << | ] + (tmp * (len >> ) % MOD) + * add[rt] * ((sum2[rt << | ] + sum1[rt << | ] * add[rt]) % MOD)) % MOD;
sum2[rt << ] = (sum2[rt << ] + ((add[rt] * add[rt] % MOD) * (len - (len >> )) % MOD) + ( * sum1[rt << ] * add[rt] % MOD)) % MOD;
sum2[rt << | ] = (sum2[rt << | ] + (((add[rt] * add[rt] % MOD) * (len >> )) % MOD) + ( * sum1[rt << | ] * add[rt] % MOD)) % MOD;
sum1[rt << ] = (sum1[rt << ] + (len - (len >> )) * add[rt]) % MOD;
sum1[rt << | ] = (sum1[rt << | ] + (len >> ) * add[rt]) % MOD;
add[rt] = ;
}
}
void update(int L , int R , int c , int ch , int l , int r , int rt)
{
if(L <= l && R >= r) {
if(ch == ) {
set[rt] = c;
add[rt] = ;
mul[rt] = ;
sum1[rt] = ((r - l + ) * c) % MOD;
sum2[rt] = ((r - l + ) * ((c * c) % MOD)) % MOD;
sum3[rt] = ((r - l + ) * (((c * c) % MOD) * c % MOD)) % MOD;
} else if(ch == ) {
mul[rt] = (mul[rt] * c) % MOD;
if(add[rt])
add[rt] = (add[rt] * c) % MOD;
sum1[rt] = (sum1[rt] * c) % MOD;
sum2[rt] = (sum2[rt] * (c * c % MOD)) % MOD;
sum3[rt] = (sum3[rt] * ((c * c % MOD) * c % MOD)) % MOD;
} else if(ch == ) {
add[rt] += c;
ll tmp = (((c * c) % MOD * c) % MOD * (r - l + )) % MOD; //(r - l + 1) * c^3
sum3[rt] = (sum3[rt] + tmp + * c * ((sum2[rt] + sum1[rt] * c) % MOD)) % MOD;
sum2[rt] = (sum2[rt] + (c * c % MOD * (r - l + ) % MOD) + * sum1[rt] * c) % MOD;
sum1[rt] = (sum1[rt] + (r - l + ) * c) % MOD;
}
return;
}
PushDown(rt , r - l + );
int m = (l + r) >> ;
if(L > m)
update(L , R , c , ch , rson);
else if(R <= m)
update(L , R , c , ch , lson);
else {
update(L , R , c , ch , lson);
update(L , R , c , ch , rson);
}
PushUp(rt);
}
ll query(int L , int R , int p , int l , int r , int rt)
{
if(L <= l && R >= r) {
if(p == )
return sum1[rt] % MOD;
else if(p == )
return sum2[rt] % MOD;
else
return sum3[rt] % MOD;
}
PushDown(rt , r - l + );
int m = (l + r) >> ;
if(L > m)
return query(L , R , p , rson);
else if(R <= m)
return query(L , R , p , lson);
else
return (query(L , R , p , lson) + query(L , R , p , rson)) % MOD;
}
int main()
{
int n , m;
int a , b , c , ch;
while(~scanf("%d %d" , &n , &m))
{
if(n == && m == )
break;
build( , n , );
while(m--) {
scanf("%d %d %d %d" , &ch , &a , &b , &c);
if(ch != ) {
update(a , b , c , ch , , n , );
} else {
printf("%lld\n" , query(a , b , c , , n , ));
}
}
}
return ;
}

Hdu 4578 Transformation (线段树 分类分析)的更多相关文章

  1. HDU 4578 Transformation --线段树,好题

    题意: 给一个序列,初始全为0,然后有4种操作: 1. 给区间[L,R]所有值+c 2.给区间[L,R]所有值乘c 3.设置区间[L,R]所有值为c 4.查询[L,R]的p次方和(1<=p< ...

  2. hdu 4578 Transformation 线段树

    没什么说的裸线段树,注意细节就好了!!! 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> ...

  3. hdu 4578 Transformation 线段树多种操作裸题

    自己写了一个带结构体的WA了7.8次 但是测了几组小数据都对..感觉问题应该出在模运算那里.写完这波题解去对拍一下. 以后线段树绝不写struct!一般的struct都带上l,r 但是一条线段的长度确 ...

  4. Transformation HDU - 4578(线段树——懒惰标记的妙用)

    Yuanfang is puzzled with the question below: There are n integers, a 1, a 2, …, a n. The initial val ...

  5. hdu 4031 attack 线段树区间更新

    Attack Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)Total Subm ...

  6. hdu 4288 离线线段树+间隔求和

    Coder Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  7. hdu 3016 dp+线段树

    Man Down Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  8. HDU 4578 - Transformation - [加强版线段树]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4578 Problem Description Yuanfang is puzzled with the ...

  9. HDU - 4578 Transformation(线段树区间修改)

    https://cn.vjudge.net/problem/HDU-4578 题意 4种操作,区间加,区间乘,区间变为一个数,求区间的和.平方和以及立方和. 分析 明显线段树,不过很麻烦..看kuan ...

随机推荐

  1. 【01】Python 环境变量、条件判断、循环、基本运算符

    1 环境变量 1.1 Windows下环境变量 系统变量Path中要加入Python安装路径: C:\xxxx\Python36;C:\xxxx\Python36\Scripts; 2 条件判断 2. ...

  2. H5 FileReader对象

    前言:FileReader是一种异步文件读取机制,结合input:file可以很方便的读取本地文件. input:file 在介绍FileReader之前,先简单介绍input的file类型. < ...

  3. vue2.0发布

    http://blog.csdn.net/xuefeiliuyuxiu/article/details/78970815

  4. 【开车旅行】题解(NOIP2012提高组)

    分析 首先我们可以发现,两个询问都可以通过一个子程序来求. 接着,如果每到一个城市再找下一个城市,显然是行不通的.所以首先先预处理从每一个城市开始,小A和小B要去的城市.预处理的方法很多,我用的是双向 ...

  5. CSS3——PC以及移动端页面适配方法(响应布局)

    响应布局就是不同宽度应用不同的样式块,每个样式块对应的是该宽度下的布局方式,从而使页面适应不同宽度. <!DOCTYPE html> <html lang="en" ...

  6. dnsmasq+Stunnel+sniproxy加密代理

    一.环境介绍 [root@kimissVPN ~]# cat /etc/redhat-release CentOS release 6.8 (Final) [root@kimissVPN ~]# un ...

  7. SpringBoot整合knife4j

    官网说明及用法: 简介 swagger-bootstrap-ui是springfox-swagger的增强UI实现,为Java开发者在使用Swagger的时候,能拥有一份简洁.强大的接口文档体验 核心 ...

  8. [springboot jpa] [bug] Could not open JPA EntityManager for transaction

    前言 最近,测试环境遇到了一个问题.经过一番百度加谷歌,终于解决了这个问题.写下这篇博客是为了记录下解决过程,以便以后查看.也希望可以帮助更多的人. 环境 java版本:8 框架:spring clo ...

  9. session.flush()与session.clear()的区别

    session.flush()和session.clear()就针对session的一级缓存的处理. 简单的说, 1 session.flush()的作用就是将session的缓存中的数据与数据库同步 ...

  10. fedora禁用(开机启动)服务和进程管理

    首先要查看有哪些(开机启动)服务 chkconfig --list 或者: systemctl list-units 然后, 根据需要进行禁用服务的开机启动: chkconfig service_na ...