Transformation

Time Limit: 15000/8000 MS (Java/Others)    Memory Limit: 65535/65536 K (Java/Others)
Total Submission(s): 10082    Accepted Submission(s): 2609

Problem Description
Yuanfang is puzzled with the question below: 
There are n integers, a1, a2, …, an. The initial values of them are 0. There are four kinds of operations.
Operation 1: Add c to each number between ax and ay inclusive. In other words, do transformation ak<---ak+c, k = x,x+1,…,y.
Operation 2: Multiply c to each number between ax and ay inclusive. In other words, do transformation ak<---ak×c, k = x,x+1,…,y.
Operation 3: Change the numbers between ax and ay to c, inclusive. In other words, do transformation ak<---c, k = x,x+1,…,y.
Operation 4: Get the sum of p power among the numbers between ax and ay inclusive. In other words, get the result of axp+ax+1p+…+ay p.
Yuanfang has no idea of how to do it. So he wants to ask you to help him. 
 
Input
There are no more than 10 test cases.
For each case, the first line contains two numbers n and m, meaning that there are n integers and m operations. 1 <= n, m <= 100,000.
Each the following m lines contains an operation. Operation 1 to 3 is in this format: "1 x y c" or "2 x y c" or "3 x y c". Operation 4 is in this format: "4 x y p". (1 <= x <= y <= n, 1 <= c <= 10,000, 1 <= p <= 3)
The input ends with 0 0.
 
Output
For each operation 4, output a single integer in one line representing the result. The answer may be quite large. You just need to calculate the remainder of the answer when divided by 10007.
 
Sample Input
5 5
3 3 5 7
1 2 4 4
4 1 5 2
2 2 5 8
4 3 5 3
0 0
 
Sample Output
307
7489
 
Source
 

题解

这道题有三种询问:set , add , mul。所以lazy标记要有三个,如果三个标记同时出现的处理方法——当更新set操作时,就把add标记和mul标记全部取消;当更新mul操作时,如果当前节点add标记存在,就把add标记改为:add * mul。这样的话就可以在PushDown()操作中先执行set,然后mul,最后add。

C++代码一

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int maxn = ;
#define left v<<1
#define right v<<1|1
#define mod 10007
struct node
{
int l ,r , value ;
int eq , add , mul ;
}tree[maxn<<];
void build(int l , int r , int v)
{
tree[v].l = l ;
tree[v].r = r ;
tree[v].add = ; tree[v].mul = ;tree[v].eq = - ;
if(l == r)
{tree[v].eq = ; return ;}
int mid = (l + r) >> ;
build(l , mid , left) ;
build(mid + , r , right) ;
}
void push_down(int v)
{
if(tree[v].l == tree[v].r)return ;
if(tree[v].eq != -)
{
tree[left].eq = tree[right].eq = tree[v].eq ;
tree[left].add = tree[right].add = ;
tree[left].mul = tree[right].mul = ;
tree[v].eq = -;
return ;
}
if(tree[v].mul != )
{
if(tree[left].eq != -)
tree[left].eq = (tree[left].eq*tree[v].mul)%mod ;
else
{
push_down(left) ;
tree[left].mul = (tree[left].mul*tree[v].mul)%mod ;
}
if(tree[right].eq != -)
tree[right].eq = (tree[right].eq*tree[v].mul)%mod ;
else
{
push_down(right) ;
tree[right].mul = (tree[right].mul*tree[v].mul)%mod ;
}
tree[v].mul = ;
}
if(tree[v].add)
{
if(tree[left].eq != -)
tree[left].eq = (tree[left].eq + tree[v].add)%mod ;
else
{
push_down(left) ;
tree[left].add = (tree[left].add + tree[v].add)%mod ;
}
if(tree[right].eq != -)
tree[right].eq = (tree[right].eq + tree[v].add)%mod ;
else
{
push_down(right) ;
tree[right].add = (tree[right].add + tree[v].add)%mod ;
}
tree[v].add = ;
}
}
void update(int l , int r , int v , int op , int c)
{
if(l <= tree[v].l && tree[v].r <= r)
{
if(op == )
{
tree[v].add = ;tree[v].mul = ;
tree[v].eq = c ;
return ;
}
if(tree[v].eq != -)
{
if(op == )tree[v].eq = (tree[v].eq + c)%mod ;
else tree[v].eq = (tree[v].eq*c)%mod ;
}
else
{
push_down(v) ;
if(op == )tree[v].add = (tree[v].add + c)%mod ;
else tree[v].mul = (tree[v].mul*c)%mod ;
}
return ;
}
push_down(v) ;
int mid = (tree[v].l + tree[v].r) >> ;
if(l <= mid)update(l , r ,left , op , c) ;
if(r > mid)update(l , r , right , op , c) ;
}
int query(int l , int r , int v , int q)
{
if(tree[v].l >= l && tree[v].r <= r && tree[v].eq != -)
{
int ans = ;
for(int i = ;i <= q;i++)
ans = (ans * tree[v].eq)%mod ;
return (ans*((tree[v].r - tree[v].l + )%mod))%mod ;
}
push_down(v) ;
int mid = (tree[v].l + tree[v].r) >> ;
if(l > mid)return query(l , r , right, q) ;
else if(r <= mid)return query(l , r ,left ,q) ;
else return (query(l , mid , left , q) + query(mid + , r , right , q))%mod ;
}
int main()
{
//freopen("in.txt" ,"r" , stdin) ;
int n , m ;
while(scanf("%d%d" , &n , &m) &&(n+m))
{
int op , x , y , c;
build( , n , ) ;
while(m--)
{
scanf("%d%d%d%d" , &op , &x , &y , &c) ;
if(op == )
printf("%d\n" , (query(x, y , , c)%mod)) ;
else update(x , y , , op , c) ;
}
}
return ;
}

C++代码二

解释

  平方和这样来推:(a + c)2 = a2 + c2 + 2ac  , 即sum2[rt] = sum2[rt] + (r - l + 1) * c * c + 2 * sum1[rt] * c;

  立方和这样推:(a + c)3 = a3 + c3 + 3a(a2 + ac) , 即sum3[rt] = sum3[rt] + (r - l + 1) * c * c * c + 3 * c * (sum2[rt] + sum1[rt] * c);

  几个注意点:add标记取消的时候是置0,mul标记取消的时候是置1;在PushDown()中也也要注意取消标记,如set操作中取消add和mul,mul操作中更新add; 在add操作中要注意sum3 , sum2 , sum1的先后顺序,一定是先sum3 , 然后sum2 , 最后sum1; int容易爆,还是用LL要保险一点; 最后就是运算较多,不要漏掉东西。

当然这种方法有取巧的成分

#include <iostream>
#include <cstdio>
#include <vector>
#include <cmath>
#include <string>
#include <string.h>
#include <algorithm>
using namespace std;
#define LL __int64
typedef long long ll;
#define eps 1e-8
#define INF INT_MAX
#define lson l , m , rt << 1
#define rson m + 1 , r , rt << 1 | 1
const int MOD = ;
const int maxn = + ;
const int N = ;
ll add[maxn << ] , set[maxn << ] , mul[maxn << ];
ll sum1[maxn << ] , sum2[maxn << ] , sum3[maxn << ];
void PushUp(int rt)
{
sum1[rt] = (sum1[rt << ] + sum1[rt << | ]) % MOD;
sum2[rt] = (sum2[rt << ] + sum2[rt << | ]) % MOD;
sum3[rt] = (sum3[rt << ] + sum3[rt << | ]) % MOD;
}
void build(int l , int r , int rt)
{
add[rt] = set[rt] = ;
mul[rt] = ;
if(l == r) {
sum1[rt] = sum2[rt] = sum3[rt] = ;
return;
}
int m = (l + r) >> ;
build(lson);
build(rson);
PushUp(rt);
}
void PushDown(int rt , int len)
{
if(set[rt]) {
set[rt << ] = set[rt << | ] = set[rt];
add[rt << ] = add[rt << | ] = ; //注意这个也要下放
mul[rt << ] = mul[rt << | ] = ;
ll tmp = ((set[rt] * set[rt]) % MOD) * set[rt] % MOD;
sum1[rt << ] = ((len - (len >> )) % MOD) * (set[rt] % MOD) % MOD;
sum1[rt << | ] = ((len >> ) % MOD) * (set[rt] % MOD) % MOD;
sum2[rt << ] = ((len - (len >> )) % MOD) * ((set[rt] * set[rt]) % MOD) % MOD;
sum2[rt << | ] = ((len >> ) % MOD) * ((set[rt] * set[rt]) % MOD) % MOD;
sum3[rt << ] = ((len - (len >> )) % MOD) * tmp % MOD;
sum3[rt << | ] = ((len >> ) % MOD) * tmp % MOD;
set[rt] = ;
}
if(mul[rt] != ) { //这个就是mul[rt] != 1 , 当时我这里没注意所以TLE了
mul[rt << ] = (mul[rt << ] * mul[rt]) % MOD;
mul[rt << | ] = (mul[rt << | ] * mul[rt]) % MOD;
if(add[rt << ]) //注意这个也要下放
add[rt << ] = (add[rt << ] * mul[rt]) % MOD;
if(add[rt << | ])
add[rt << | ] = (add[rt << | ] * mul[rt]) % MOD;
ll tmp = (((mul[rt] * mul[rt]) % MOD * mul[rt]) % MOD);
sum1[rt << ] = (sum1[rt << ] * mul[rt]) % MOD;
sum1[rt << | ] = (sum1[rt << | ] * mul[rt]) % MOD;
sum2[rt << ] = (sum2[rt << ] % MOD) * ((mul[rt] * mul[rt]) % MOD) % MOD;
sum2[rt << | ] = (sum2[rt << | ] % MOD) * ((mul[rt] * mul[rt]) % MOD) % MOD;
sum3[rt << ] = (sum3[rt << ] % MOD) * tmp % MOD;
sum3[rt << | ] = (sum3[rt << | ] % MOD) * tmp % MOD;
mul[rt] = ;
}
if(add[rt]) {
add[rt << ] += add[rt]; //add是+= , mul是*=
add[rt << | ] += add[rt];
ll tmp = (add[rt] * add[rt] % MOD) * add[rt] % MOD; //注意sum3 , sum2 , sum1的先后顺序
sum3[rt << ] = (sum3[rt << ] + (tmp * (len - (len >> )) % MOD) + * add[rt] * ((sum2[rt << ] + sum1[rt << ] * add[rt]) % MOD)) % MOD;
sum3[rt << | ] = (sum3[rt << | ] + (tmp * (len >> ) % MOD) + * add[rt] * ((sum2[rt << | ] + sum1[rt << | ] * add[rt]) % MOD)) % MOD;
sum2[rt << ] = (sum2[rt << ] + ((add[rt] * add[rt] % MOD) * (len - (len >> )) % MOD) + ( * sum1[rt << ] * add[rt] % MOD)) % MOD;
sum2[rt << | ] = (sum2[rt << | ] + (((add[rt] * add[rt] % MOD) * (len >> )) % MOD) + ( * sum1[rt << | ] * add[rt] % MOD)) % MOD;
sum1[rt << ] = (sum1[rt << ] + (len - (len >> )) * add[rt]) % MOD;
sum1[rt << | ] = (sum1[rt << | ] + (len >> ) * add[rt]) % MOD;
add[rt] = ;
}
}
void update(int L , int R , int c , int ch , int l , int r , int rt)
{
if(L <= l && R >= r) {
if(ch == ) {
set[rt] = c;
add[rt] = ;
mul[rt] = ;
sum1[rt] = ((r - l + ) * c) % MOD;
sum2[rt] = ((r - l + ) * ((c * c) % MOD)) % MOD;
sum3[rt] = ((r - l + ) * (((c * c) % MOD) * c % MOD)) % MOD;
} else if(ch == ) {
mul[rt] = (mul[rt] * c) % MOD;
if(add[rt])
add[rt] = (add[rt] * c) % MOD;
sum1[rt] = (sum1[rt] * c) % MOD;
sum2[rt] = (sum2[rt] * (c * c % MOD)) % MOD;
sum3[rt] = (sum3[rt] * ((c * c % MOD) * c % MOD)) % MOD;
} else if(ch == ) {
add[rt] += c;
ll tmp = (((c * c) % MOD * c) % MOD * (r - l + )) % MOD; //(r - l + 1) * c^3
sum3[rt] = (sum3[rt] + tmp + * c * ((sum2[rt] + sum1[rt] * c) % MOD)) % MOD;
sum2[rt] = (sum2[rt] + (c * c % MOD * (r - l + ) % MOD) + * sum1[rt] * c) % MOD;
sum1[rt] = (sum1[rt] + (r - l + ) * c) % MOD;
}
return;
}
PushDown(rt , r - l + );
int m = (l + r) >> ;
if(L > m)
update(L , R , c , ch , rson);
else if(R <= m)
update(L , R , c , ch , lson);
else {
update(L , R , c , ch , lson);
update(L , R , c , ch , rson);
}
PushUp(rt);
}
ll query(int L , int R , int p , int l , int r , int rt)
{
if(L <= l && R >= r) {
if(p == )
return sum1[rt] % MOD;
else if(p == )
return sum2[rt] % MOD;
else
return sum3[rt] % MOD;
}
PushDown(rt , r - l + );
int m = (l + r) >> ;
if(L > m)
return query(L , R , p , rson);
else if(R <= m)
return query(L , R , p , lson);
else
return (query(L , R , p , lson) + query(L , R , p , rson)) % MOD;
}
int main()
{
int n , m;
int a , b , c , ch;
while(~scanf("%d %d" , &n , &m))
{
if(n == && m == )
break;
build( , n , );
while(m--) {
scanf("%d %d %d %d" , &ch , &a , &b , &c);
if(ch != ) {
update(a , b , c , ch , , n , );
} else {
printf("%lld\n" , query(a , b , c , , n , ));
}
}
}
return ;
}

Hdu 4578 Transformation (线段树 分类分析)的更多相关文章

  1. HDU 4578 Transformation --线段树,好题

    题意: 给一个序列,初始全为0,然后有4种操作: 1. 给区间[L,R]所有值+c 2.给区间[L,R]所有值乘c 3.设置区间[L,R]所有值为c 4.查询[L,R]的p次方和(1<=p< ...

  2. hdu 4578 Transformation 线段树

    没什么说的裸线段树,注意细节就好了!!! 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> ...

  3. hdu 4578 Transformation 线段树多种操作裸题

    自己写了一个带结构体的WA了7.8次 但是测了几组小数据都对..感觉问题应该出在模运算那里.写完这波题解去对拍一下. 以后线段树绝不写struct!一般的struct都带上l,r 但是一条线段的长度确 ...

  4. Transformation HDU - 4578(线段树——懒惰标记的妙用)

    Yuanfang is puzzled with the question below: There are n integers, a 1, a 2, …, a n. The initial val ...

  5. hdu 4031 attack 线段树区间更新

    Attack Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)Total Subm ...

  6. hdu 4288 离线线段树+间隔求和

    Coder Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su ...

  7. hdu 3016 dp+线段树

    Man Down Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  8. HDU 4578 - Transformation - [加强版线段树]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4578 Problem Description Yuanfang is puzzled with the ...

  9. HDU - 4578 Transformation(线段树区间修改)

    https://cn.vjudge.net/problem/HDU-4578 题意 4种操作,区间加,区间乘,区间变为一个数,求区间的和.平方和以及立方和. 分析 明显线段树,不过很麻烦..看kuan ...

随机推荐

  1. 【前端】HTML基础

    前端 HTML:一个人 CSS:这个人的衣服 JS:这个人的行为 1 head标签 head相关标签 <!--html5--> <!DOCTYPE html> <html ...

  2. 半小时写完替罪羊重构点分树做动态动态点分治之紫荆花之恋的wyy贴心指导

    刷题训练 初学者 有一定语言基础,但是不了解算法竞赛,水平在联赛一等奖以下的. 参考书:<算法竞赛入门经典--刘汝佳>,<算法竞赛入门经典训练指南--刘汝佳> 题库:洛谷(历年 ...

  3. 去掉html中的标签

    //去掉html中的图片 String regEx_image = "(<img.*src\\s*=\\s*(.*?)[^>]*?>)"; Pattern p_s ...

  4. Mysql数据库常见试题

    引用自http://blog.csdn.net/laoniyouxi123/article/details/51161157 sql语句应该考虑哪些安全性? 答: (1)防止sql注入,对特殊字符进行 ...

  5. [洛谷3934]P3934 Nephren Ruq Insania题解

    先放个奈芙莲 解法 看到这种题目就知道是欧拉降幂,然后根据某玄学证明,递归欧拉降幂从l到r不会超过\(\Theta(log_n)\),所以直接递归解决,然后区间修改直接树状数组维护一下 然后就A了 代 ...

  6. 【CF1237D】Balanced Playlist(set,二分,线段树)

    题意:给定一个n首歌的播放列表,第i首的值为a[i],听完第i首会回到第1首 现在从每首开始往下,记录听过的最大值,如果当前听的值严格小于听过最大值的一半则停止 问从每首歌开始往下听能听几首,不会停止 ...

  7. testlink用例转换工具2018.12版

    首先说明一点,网上有很多资料,但真正可用的很少:在本人经过百度后,发现其实很多案例会因为各种原因而无法最终实现. Testlink用例转换工具,可以大致分为3种工具: 1)EX-Converter由第 ...

  8. 在命令行运行java代码

    因为尝试将运行结果通过管道命令保存,所以尝试在命令行(不借助lde来运行java代码,结果折腾了半天) 仿照的是eclipse创建文件目录的方式 最终解决方法是: #/bin/bash root_di ...

  9. MacOS上zsh环境设置默认jdk

    进入home目录 cd ~ 修改.zprofile文件 vi .zprofile 按i进入vim插入模式,添加以下代码 export JAVA_HOME="/Library/Java/Jav ...

  10. TypeScript快速笔记(一)

    刚学习TypeScript,但因为马上要用,主要是寻求先快速上手,而后再求精. 推荐学习网站: 1)https://www.runoob.com/typescript/ts-tutorial.html ...