P5444 [APIO2019]奇怪装置
考虑求出最小的循环节 $G$ 使得 $t,t+G$ 得到的数对是一样的
由 $y \equiv t \mod B$ ,得到 $G$ 一定是 $B$ 的倍数,设 $zB=G$,则 $t,t+zB$ 结果相同
代入 $x \equiv (t+\left \lfloor \frac{t}{B} \right \rfloor) \mod A$
得到
$(t+zB+\left \lfloor \frac{t+zB}{B} \right \rfloor) \equiv (t+\left \lfloor \frac{t}{B} \right \rfloor) \mod A$
$(t+zB+z+\left \lfloor \frac{t}{B} \right \rfloor) \equiv (t+\left \lfloor \frac{t}{B} \right \rfloor) \mod A$
$(zB+z) \equiv 0 \mod A$
$z(B+1) \equiv 0 \mod A$
即 $z(B+1)$ 是 $A$ 的倍数
想得到最小的 $G$ 就要先求出最小的 $z$,考虑两边提出公因数 $\gcd(A,B+1)$
那么 $z(B+1)/\gcd(A,B+1) = kA/\gcd(A,B+1) $
此时因为 $(B+1)/\gcd(A,B+1)$ 已经和 $A/\gcd(A,B+1)$ 没有公因数了
那么 $z$ 一定得是 $A/\gcd(A,B+1)$ 的倍数,那么最小的 $z$ 就是当 $k=1$ 时, $z=A/\gcd(A,B+1)$
所以 $G=zB=AB/gcd(A,B+1)$
那么对于一个时间段 $l,r$ ,如果 $r-l+1>=G$ 则所有数都会被覆盖到,答案就是 $G$
否则把 $l,r$ 对 $G$ 取模,因为此时 $r-l+1<G$,所以取模后如果 $l<=r$ 则 $l,r$ 区间的数会被考虑到
如果 $l>r$ 则 $[0,r]$ 和 $[l,G-1]$ 的数会被覆盖到,直接离散化看看哪些区间被覆盖到就好了
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
inline ll read()
{
ll x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=4e6+;
ll n,A,B,ans;
ll gcd(ll a,ll b) { return b ? gcd(b,a%b) : a; }
struct dat{
ll pos,v;
inline bool operator < (const dat &tmp) const {
return pos!=tmp.pos ? pos<tmp.pos : v>tmp.v;
}
}d[N];
ll tot;
int main()
{
n=read(),A=read(),B=read();
ll G=A/gcd(A,B+)*B,l,r;//注意先除后乘
while(n--)
{
l=read(),r=read();
if(r-l+>=G) { printf("%lld\n",G); return ; }
l=l%G,r=r%G;
if(l<=r) d[++tot]=(dat){l,},d[++tot]=(dat){r,-};
else d[++tot]=(dat){,},d[++tot]=(dat){r,-},d[++tot]=(dat){l,},d[++tot]=(dat){G-,-};
}
sort(d+,d+tot+); int now=; ll pre;
for(int i=;i<=tot;i++)
{
if(d[i].v&&!now) pre=d[i].pos;//如果覆盖开始则记录左端点
now+=d[i].v;
if(!now) ans+=d[i].pos-pre+;//覆盖结束统计答案
}
printf("%lld\n",ans);
return ;
}
P5444 [APIO2019]奇怪装置的更多相关文章
- Luogu P5444 [APIO2019]奇怪装置
题目 这种题目看上去就是有循环节的对吧. 在考场上,一个可行的方式是打表. 现在我们手推一下这个循环节. 记函数\(f(t)=(((t+\lfloor\frac tB\rfloor)\%A),(t\% ...
- 洛谷$P5444\ [APIO2019]$奇怪装置 数论
正解:数论 解题报告: 传送门$QwQ$ 我好像当初考的时候这题爆零了,,,部分分都没想到,,,我真的好菜$kk$ 考虑如果在$t_1,t_2$两个时刻有$x_1=x_2,y_1=y_2$是什么情况$ ...
- 【LOJ#3144】[APIO2019]奇怪装置(数论)
[LOJ#3144][APIO2019]奇怪装置(数论) 题面 LOJ 题解 突然发现\(LOJ\)上有\(APIO\)的题啦,赶快来做一做. 这题是窝考场上切了的题嗷.写完暴力之后再推了推就推出正解 ...
- 【LG5444】[APIO2019]奇怪装置
[LG5444][APIO2019]奇怪装置 题面 洛谷 题目大意: 给定\(A,B\),对于\(\forall t\in \mathbb N\),有二元组\((x,y)=((t+\lfloor\fr ...
- 题解-APIO2019奇怪装置
problem loj-3144 题意概要:设函数 \(f(t)\) 的返回值为一个二元组,即 \(f(t)=((t+\lfloor \frac tB\rfloor)\bmod A, t\bmod B ...
- [APIO2019] 奇怪装置
$solution:$ 问题其实就是求两个式子的循环节. 钦定 $t\mod B=0$且 $(t\neq 0)$,其 $t$ 为循环节. 则将 $1$ 式拆开得 $\frac{t\times (B+1 ...
- #3144. 「APIO 2019」奇怪装置
#3144. 「APIO 2019」奇怪装置 题目描述 考古学家发现古代文明留下了一种奇怪的装置.该装置包含两个屏幕,分别显示两个整数 \(x\) 和 \(y\). 经过研究,科学家对该装置得出了一个 ...
- [APIO 2010] [LOJ 3144] 奇怪装置 (数学)
[APIO 2010] [LOJ 3144] 奇怪装置 (数学) 题面 略 分析 考虑t1,t2时刻坐标相同的条件 \[\begin{cases} t_1+\lfloor \frac{t_1}{B} ...
- [APIO2019T1]奇怪装置
考古学家发现古代文明留下了一种奇怪的装置.该装置包含两个屏幕,分别显示两个整数x和y.经过研究,科学家对该装置得出了一个结论:该装置是一个特殊的时钟,它从过去的某个时间点开始测量经过的时刻数t,但该装 ...
随机推荐
- java多线程sleep,wait,yield方法区别
sleep() 方法sleep()的作用是在指定的毫秒数内让当前“正在执行的线程”休眠(暂停执行).这个“正在执行的线程”是指this.currentThread()返回的线程.sleep方法有两个重 ...
- 使用vue 3.0 初始化vue脚手架
vue-cli3.0安装 如果你事先已经全局安装了旧版本的vue-cli(1.x 或 2.x),你需要先卸载它: npm uninstall vue-cli -g 安装 npm install -g ...
- PHP文件操作基本代码
PHP中提供了一系列的I/O函数,能简捷地实现我们所需要的功能,包括文件系统操作和目录操作(如“复制[copy]”).下面兄弟连PHP培训 小编给大家介绍的是基本的文件读写操作:(1)读文件 ;(2) ...
- PHP生成静态网页的方法
看到很多朋友在各个地方发帖问PHP生成静态文章系统的方法,以前曾做过这样一个系统,遂谈些看法,以供各位参考.兄弟先带大家回顾一些基本的概念. 一,PHP脚本与动态页面. PHP脚本是一种服务器端脚本程 ...
- 父页面和iframe之间的通信(操作和传值问题)
一.jq实现iframe父页面与子页面传值与方法调用 1.值操作 (1)父页面获取子页面的值 $('iframe的id').contents().find(子页面的id).text(); (2)子页面 ...
- size_t是什么?
在32位编译器下size_t可看做unsigned int: 在64位编译器下size_t可看做unsigned long long: sizeof返回的数据类型就为size_t. C++之size_ ...
- activeMQ安全机制
- [design pattern](2) Observer
前言 在上一个博客中我们介绍了Strategy模式,它是行为型模式麾下的一员大将.那么本博客我们来学习一下行为型模式麾下的另一员大将Observer模式. 思考题 老套路,先来思考下面的问题: 问题: ...
- git pull失误提交
git pull 提示错误,Your local changes to the following files would be overwritten by merge 到公司后本来打算git pu ...
- Redis实现存取数据+数据存取
添加依赖: <dependency> <groupId>com.fasterxml.jackson.core</groupId> <artifactId> ...