题目

考虑正难则反,答案即为\(n!-\text{返回值为n的排列数}\)

一个排列的返回值为\(n\),当且仅当在\(n\)出现之前没有一个数后面有连续\(k\)个小于它的数

设\(f_i\)表示\(1\)到\(i\)的排列中,没有任何一个数后面有连续\(k\)个小于它的数

枚举\(i\)的位置,则有

\[f_i=\sum_{j=1}^kA_{i-1}^{j-1}f_{i-j}
\]

即把\(i\)放在倒数第\(j\)个位置,从\(1\)到\(i-1\)中选\(j-1\)个数排列在\(i\)后面,剩下\(i-j\)个个数放在\(i\)前面并且保证合法

把排列数打开,就变成了\(f_i=(i-1)!\sum_{j=1}^{k}\frac{f_{i-j}}{(i-j)!}\)

维护一下\(\frac{f_i}{i!}\)的前缀和就可以快速转移了

枚举一下\(n\)所在的位置,返回值为\(n\)的排列数即为

\[\sum_{i=1}^nf_{i-1}\binom{n-1}{i-1}(n-i)!
\]

代码

#include<bits/stdc++.h>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
const int mod=1e9+7;
const int maxn=1e6+5;
int pre[maxn],fac[maxn],ifac[maxn],inv[maxn],f[maxn];
int n,m;
inline int C(int n,int m) {
if(n<m) return 0;
return 1ll*fac[n]*ifac[n-m]%mod*ifac[m]%mod;
}
inline int qm(int x) {return x>=mod?x-mod:x;}
inline int dqm(int x) {return x<0?x+mod:x;}
inline int calc(int l,int r) {
if(l<=0) return pre[r];
return dqm(pre[r]-pre[l-1]);
}
int main() {
n=read(),m=read();fac[0]=ifac[0]=inv[1]=1;
for(re int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%mod;
for(re int i=2;i<=n;i++) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
for(re int i=1;i<=n;i++) ifac[i]=1ll*ifac[i-1]*inv[i]%mod;
f[0]=1;pre[0]=1;
for(re int i=1;i<n;i++) {
f[i]=1ll*calc(i-m,i-1)*fac[i-1]%mod;
pre[i]=qm(pre[i-1]+1ll*f[i]*ifac[i]%mod);
}
int ans=0;
for(re int i=1;i<=n;i++)
ans=qm(ans+1ll*f[i-1]*C(n-1,i-1)%mod*fac[n-i]%mod);
printf("%d\n",dqm(fac[n]-ans));
return 0;
}

【CF886E】Maximum Element的更多相关文章

  1. 【CF886E】Maximum Element DP

    [CF886E]Maximum Element 题意:小P有一个1-n的序列,他想找到整个序列中最大值的出现位置,但是他觉得O(n)扫一遍太慢了,所以它采用了如下方法: 1.逐个遍历每个元素,如果这个 ...

  2. 【CF888E】Maximum Subsequence(meet in the middle)

    [CF888E]Maximum Subsequence(meet in the middle) 题面 CF 洛谷 题解 把所有数分一下,然后\(meet\ in\ the\ middle\)做就好了. ...

  3. 【CF888E】Maximum Subsequence 折半搜索

    [CF888E]Maximum Subsequence 题意:给你一个序列{ai},让你从中选出一个子序列,使得序列和%m最大. n<=35,m<=10^9 题解:不小心瞟了一眼tag就一 ...

  4. 【数组】Maximum Subarray

    题目: Find the contiguous subarray within an array (containing at least one number) which has the larg ...

  5. 【leetcode】Maximum Subarray (53)

    1.   Maximum Subarray (#53) Find the contiguous subarray within an array (containing at least one nu ...

  6. 【leetcode】Majority Element

    题目概述: Given an array of size n, find the majority element. The majority element is the element that ...

  7. 【leetcode】Maximum Gap

    Maximum Gap Given an unsorted array, find the maximum difference between the successive elements in ...

  8. 【leetcode】Maximum Subarray

    Maximum Subarray Find the contiguous subarray within an array (containing at least one number) which ...

  9. 【leetcode】Maximum Gap(hard)★

    Given an unsorted array, find the maximum difference between the successive elements in its sorted f ...

随机推荐

  1. PHP定界符<<<的使用方法

    在web编程过程中难免会遇到用echo来输出大段的html和javascript脚本的情况,如果用传统的输出方法——按字符串输出的话,使用PHP肯定要有大量的转义符来对字符串中的引号''/" ...

  2. csdn加入暂时会话功能

    版权声明:本文为博主原创文章.若要转载请注明出处! ^_^ https://blog.csdn.net/u010892841/article/details/25334153             ...

  3. spring 中各个配置文件的说明

    (1)pom.xml pom.xml文件是在整个项目下面,该xml的主要作用是:导入框架的jar包及其所依赖的jar包,导入的jar包是写在<dependencies></depen ...

  4. Nodejs入门级基础+实战

    这篇随笔将会按序记录如下内容: NodeJs 简介 安装  NodeJs HTTP 模块.URL 模块 CommonJs 和 Nodejs 中自定义模块 NodeJs FS 模块 利用 HTTP 模块 ...

  5. org.springframework.web.HttpMediaTypeNotSupportedException: Content type 'application/json;charset=UTF-8' not supported

    最后找到我的问题,springmvc配置文件中没加 <mvc:annotation-driven/> java代码: @RequestMapping(value="/reques ...

  6. 【学术篇】CF932E Team Work && bzoj5093 图的价值

    两个题的传送门 对于CF这道题, 分别考虑每种可能的集合大小, 每个大小为\(k\)的集合数量有\(\binom nk\)个, 所以最后的答案就是 \[\sum_{i=0}^n\binom{n}{i} ...

  7. 发布后台接口报错:could not load file or assembly 'mysql.data,' version=6.7.4.0, Culture=neutral, PublicKeyToken=c5687fc88969c44d

    本地调试正常,但是服务器上面一直报错:could not load file or assembly 'mysql.data,' version=6.7.4.0, Culture=neutral, P ...

  8. 3、Python 基础类型 -- List 列表类型

    2.更新列表:list.append() 3.删除列表元素 del 

  9. Java HashMap问题

    1:map集合简述:         我们常用的集合实现类有HashMap.LinkedHashMap.TreeMap,HashTable.HashMap根据key的hashCode值来保存value ...

  10. Ubuntu开放对外端口

    1.查看已经开启的端口 sudo ufw status 2.打开80端口 sudo ufw allow 80 3.防火墙开启 sudo ufw enable 4.防火墙重启 sudo ufw relo ...