Mysterious Crime CodeForces - 1043D (思维+组合数学)
Acingel is a small town. There was only one doctor here — Miss Ada. She was very friendly and nobody has ever said something bad about her, so who could've expected that Ada will be found dead in her house? Mr Gawry, world-famous detective, is appointed to find the criminal. He asked mm neighbours of Ada about clients who have visited her in that unlucky day. Let's number the clients from 11 to nn. Each neighbour's testimony is a permutation of these numbers, which describes the order in which clients have been seen by the asked neighbour.
However, some facts are very suspicious – how it is that, according to some of given permutations, some client has been seen in the morning, while in others he has been seen in the evening? "In the morning some of neighbours must have been sleeping!" — thinks Gawry — "and in the evening there's been too dark to see somebody's face...". Now he wants to delete some prefix and some suffix (both prefix and suffix can be empty) in each permutation, so that they'll be non-empty and equal to each other after that — some of the potential criminals may disappear, but the testimony won't stand in contradiction to each other.
In how many ways he can do it? Two ways are called different if the remaining common part is different.
Input
The first line contains two integers nn and mm (1≤n≤1000001≤n≤100000, 1≤m≤101≤m≤10) — the number of suspects and the number of asked neighbors.
Each of the next mm lines contains nn integers a1,a2,…,ana1,a2,…,an (1≤ai≤n1≤ai≤n). It is guaranteed that these integers form a correct permutation (that is, each number from 11 to nn appears exactly once).
Output
Output a single integer denoting the number of ways to delete some prefix and some suffix of each permutation (possibly empty), such that the remaining parts will be equal and non-empty.
Examples
3 2
1 2 3
2 3 1
4
5 6
1 2 3 4 5
2 3 1 4 5
3 4 5 1 2
3 5 4 2 1
2 3 5 4 1
1 2 3 4 5
5
2 2
1 2
2 1
2
Note
In the first example, all possible common parts are [1][1], [2][2], [3][3] and [2,3][2,3].
In the second and third examples, you can only leave common parts of length 11.
题意:
给你k个互不相同的1~n的全排列,
求这k个排列有多少个公共子序列。
思路:
这题关键的一点是全排列的性质,每一个数都仅且出现1次。
利用这个性质,我们可以建立一个pre数组,a[i] [x ] 表示的是在第i个全排列中 x这个数前面的数。
那么我们只需要从一个全排列下手,来求他的子序列是否也是其他全部排列的子序列,
利用一个cnt变量来维护当前已经满足条件的子序列长度。
如果当前的全排列x前面的数y,其他的全排列中x前面的数也是y,那么cnt++,否则把cnt赋值为1,(一个数也是满足条件的子序列)
(上面用到的是组合数学的性质,即3个长度的序列有 3+2+1个子序列 那么维护的时候加起来也是1+2+3 )
细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define db(x) cout<<"== [ "<<x<<" ] =="<<endl;
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll powmod(ll a,ll b,ll MOD){ll ans=;while(b){if(b%)ans=ans*a%MOD;a=a*a%MOD;b/=;}return ans;}
inline void getInt(int* p);
const int maxn=;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int pre[maxn];
int a[][];
int n,k;
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\\code_stream\\out.txt","w",stdout);
gbtb;
cin>>n>>k;
repd(i,,k)
{
repd(j,,n)
{
cin>>pre[j];// pre数组中最终存的是最后一行的值
a[i][pre[j]]=pre[j-]; // a[i][j] 表示第i个全排列中,j之前的数
}
}
ll cnt=;
ll ans=;
repd(j,,n)
{
int isok=;
repd(i,,k-)
{
if(a[i][pre[j]]!=pre[j-])// 判断第i行中是否存在最后一行的第j 位和第j-1 位
{
isok=;
break;
}
}
if(isok)
{
cnt++;
}else
{
cnt=;
}
ans+=cnt;
}
cout<<ans<<endl; return ;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '');
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * - ch + '';
}
}
else {
*p = ch - '';
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * + ch - '';
}
}
}
Mysterious Crime CodeForces - 1043D (思维+组合数学)的更多相关文章
- Mysterious Crime CodeForces - 1043D (哈希)
大意: 给定m个n排列, 求有多少个公共子串. 枚举每个位置, hash求出最大匹配长度. #include <iostream> #include <sstream> #in ...
- CodeForces 1043D Mysterious Crime 区间合并
题目传送门 题目大意: 给出m个1-n的全排列,问这m个全排列中有几个公共子串. 思路: 首先单个的数字先计算到答案中,有n个. 然后考虑多个数字,如果有两个数字相邻,那么在m个串中必定都能找到这两个 ...
- [题解]Codeforces Round #519 - D. Mysterious Crime
[题目] D. Mysterious Crime [描述] 有m个n排列,求一共有多少个公共子段. 数据范围:1<=n<=100000,1<=m<=10 [思路] 对于第一个排 ...
- 【Codeforces Round #519 by Botan Investments D】Mysterious Crime
[链接] 我是链接,点我呀:) [题意] 相当于问你这m个数组的任意长度公共子串的个数 [题解] 枚举第1个数组以i为起点的子串. 假设i..j是以i开头的子串能匹配的最长的长度. (这个j可以给2. ...
- Codeforces Round #519 D - Mysterious Crime
题目 题意: 在m组数,每组有n个数(数的范围1-n)中,找到某些序列 使它是每组数的一个公共子序列,问这样的某些序列的个数? 思路: 不难想出答案ans是≥n的. 创立一个next数组,使每组中第i ...
- D. Mysterious Crime
链接 [http://codeforces.com/contest/1043/problem/D] 题意 给你一个m*n的矩阵(m<=10,n<=1e5), 每一行的数字是1到n里不同的数 ...
- Codeforces 424A (思维题)
Squats Time Limit: 1000MS Memory Limit: 262144KB 64bit IO Format: %I64d & %I64u Submit Statu ...
- Colorful Bricks CodeForces - 1081C ( 组合数学 或 DP )
On his free time, Chouti likes doing some housework. He has got one new task, paint some bricks in t ...
- Codeforces 15E Triangles - 组合数学
Last summer Peter was at his granny's in the country, when a wolf attacked sheep in the nearby fores ...
随机推荐
- 内网IPC$入侵
一.域操作相关的命令1.查看域用户 net user/domain2.查看有几个域 net view/domain3.查看域内的主机 net view/domain: XXX4.查看域里面的组 net ...
- pip Fatal error in launcher: Unable to create process using '""'
如果你装了python2.7, python3.5, 在两个版本的兼容问题上折腾很久了, 通过修改环境变量, 能够出现下面的界面, 恭喜你, 暂时解决了一些问题, 哈哈
- 阶段3 2.Spring_04.Spring的常用注解_2 常用IOC注解按照作用分类
注解配置和xml的配置要实现的功能都是一样的.都是要降低程序间的耦合,只不过配置的形式不一样 打包方式改成jar 加入spring 的依赖 复制之前的代码过来 复制到我们新建的工程里 resurces ...
- Tensorflow-gpu搭建CUDA 10.0与cuDNN等版本问题
https://blog.csdn.net/weixin_42718092/article/details/85001140
- 【VS开发】在VS2010中开发ActiveX控件设置测试容器的方式
在VS2010中开发ActiveX控件设置测试容器的方式 借鉴文章http://blog.csdn.net/waxgourd0/article/details/7374669 在VS2010中开发MF ...
- 【VS开发】windows注册ActiveX控件
ActiveX控件是一个动态链接库,是作为基于COM服务器进行操作的,并且可以嵌入在包容器宿主应用程序中,ActiveX控件的前身就是OLE控件.由于ActiveX控件与开发平台无关,因此,在一种编程 ...
- javascrpt的string和Boolean类型
string类型用于表示由零或多个16位unicode字符组成字符序列,即 字符串,字符可以由双引号(“)或单引号(‘)表示 tostring()与 string() 语法:str.tostring( ...
- 从零开始学习GDI+ (三) 画笔与画刷
- Dubbo从入门到精通
1.在Dubbo中注解的使用 2.Dubbo启动时qos-server can not bind localhost:22222错误解决 3.Dubbo配置方式详解
- 如何使用 re模块的, spilt.
例: 这是一组 网卡的信息. 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN link/loopb ...