CNN卷积神经网络处理Mnist数据集

CNN模型结构:

输入层:Mnist数据集(28*28)
第一层卷积:感受视野5*5,步长为1,卷积核:32个
第一层池化:池化视野2*2,步长为2
第二层卷积:感受视野5*5,步长为1,卷积核:64个
第二层池化:池化视野2*2,步长为2
全连接层:设置1024个神经元
输出层:0~9十个数字类别
 
代码实现:
import tensorflow as tf
#Tensorflow提供了一个类来处理MNIST数据
from tensorflow.examples.tutorials.mnist import input_data
import time #载入数据集
mnist=input_data.read_data_sets('MNIST_data',one_hot=True)
#设置批次的大小
batch_size=100
#计算一共有多少个批次
n_batch=mnist.train.num_examples//batch_size #定义初始化权值函数
def weight_variable(shape):
initial=tf.truncated_normal(shape,stddev=0.1)
return tf.Variable(initial)
#定义初始化偏置函数
def bias_variable(shape):
initial=tf.constant(0.1,shape=shape)
return tf.Variable(initial)
#卷积层
def conv2d(input,filter):
return tf.nn.conv2d(input,filter,strides=[1,1,1,1],padding='SAME')
#池化层
def max_pool_2x2(value):
return tf.nn.max_pool(value,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME') #输入层
#定义两个placeholder
x=tf.placeholder(tf.float32,[None,784]) #28*28
y=tf.placeholder(tf.float32,[None,10])
#改变x的格式转为4维的向量[batch,in_hight,in_width,in_channels]
x_image=tf.reshape(x,[-1,28,28,1]) #卷积、激励、池化操作
#初始化第一个卷积层的权值和偏置
W_conv1=weight_variable([5,5,1,32]) #5*5的采样窗口,32个卷积核从1个平面抽取特征
b_conv1=bias_variable([32]) #每一个卷积核一个偏置值
#把x_image和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
h_conv1=tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)
h_pool1=max_pool_2x2(h_conv1) #进行max_pooling 池化层 #初始化第二个卷积层的权值和偏置
W_conv2=weight_variable([5,5,32,64]) #5*5的采样窗口,64个卷积核从32个平面抽取特征
b_conv2=bias_variable([64])
#把第一个池化层结果和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
h_conv2=tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)
h_pool2=max_pool_2x2(h_conv2) #池化层 #28*28的图片第一次卷积后还是28*28,第一次池化后变为14*14
#第二次卷积后为14*14,第二次池化后变为了7*7
#经过上面操作后得到64张7*7的平面 #全连接层
#初始化第一个全连接层的权值
W_fc1=weight_variable([7*7*64,1024])#经过池化层后有7*7*64个神经元,全连接层有1024个神经元
b_fc1 = bias_variable([1024])#1024个节点
#把池化层2的输出扁平化为1维
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
#求第一个全连接层的输出
h_fc1=tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1) #keep_prob用来表示神经元的输出概率
keep_prob=tf.placeholder(tf.float32)
h_fc1_drop=tf.nn.dropout(h_fc1,keep_prob) #初始化第二个全连接层
W_fc2=weight_variable([1024,10])
b_fc2=bias_variable([10]) #输出层
#计算输出
prediction=tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2) #交叉熵代价函数
cross_entropy=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#使用AdamOptimizer进行优化
train_step=tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
#结果存放在一个布尔列表中(argmax函数返回一维张量中最大的值所在的位置)
correct_prediction=tf.equal(tf.argmax(prediction,1),tf.argmax(y,1))
#求准确率(tf.cast将布尔值转换为float型)
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) #创建会话
with tf.Session() as sess:
start_time=time.clock()
sess.run(tf.global_variables_initializer()) #初始化变量
for epoch in range(21): #迭代21次(训练21次)
for batch in range(n_batch):
batch_xs,batch_ys=mnist.train.next_batch(batch_size)
sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.7}) #进行迭代训练
#测试数据计算出准确率
acc=sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
print('Iter'+str(epoch)+',Testing Accuracy='+str(acc))
end_time=time.clock()
print('Running time:%s Second'%(end_time-start_time)) #输出运行时间

  运行结果:

TensorFlow主要函数说明
1、卷积层
tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None)

  

(1)data_format:表示输入的格式,有两种分别为:“NHWC”和“NCHW”,默认为“NHWC”
(2)input:输入是一个4维格式的(图像)数据,数据的 shape 由 data_format 决定:当 data_format 为“NHWC”输入数据的shape表示为[batch, in_height, in_width, in_channels],分别表示训练时一个batch的图片数量、图片高度、 图片宽度、 图像通道数。当 data_format 为“NHWC”输入数据的shape表示为[batch, in_channels, in_height, in_width]
(3)filter:卷积核是一个4维格式的数据:shape表示为:[height,width,in_channels, out_channels],分别表示卷积核的高、宽、深度(与输入的in_channels应相同)、输出 feature map的个数(即卷积核的个数)。
(4)strides:表示步长:一个长度为4的一维列表,每个元素跟data_format互相对应,表示在data_format每一维上的移动步长。当输入的默认格式为:“NHWC”,则 strides = [batch , in_height , in_width, in_channels]。其中 batch 和 in_channels 要求一定为1,即只能在一个样本的一个通道上的特征图上进行移动,in_height , in_width表示卷积核在特征图的高度和宽度上移动的布长。
(5)padding:表示填充方式:“SAME”表示采用填充的方式,简单地理解为以0填充边缘,当stride为1时,输入和输出的维度相同;“VALID”表示采用不填充的方式,多余地进行丢弃。
对于卷积操作:
2、池化层
#池化层:
#Max pooling:取“池化视野”矩阵中的最大值
tf.nn.max_pool( value, ksize,strides,padding,data_format=’NHWC’,name=None)
#Average pooling:取“池化视野”矩阵中的平均值
tf.nn.avg_pool(value, ksize,strides,padding,data_format=’NHWC’,name=None)

  

TensorFlow——CNN卷积神经网络处理Mnist数据集的更多相关文章

  1. 3层-CNN卷积神经网络预测MNIST数字

    3层-CNN卷积神经网络预测MNIST数字 本文创建一个简单的三层卷积网络来预测 MNIST 数字.这个深层网络由两个带有 ReLU 和 maxpool 的卷积层以及两个全连接层组成. MNIST 由 ...

  2. tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图

    tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图 因为很多 demo 都比较复杂,专门抽出这两个函数,写的 demo. 更多教程:http://www.tensorflown ...

  3. Tensorflow学习教程------利用卷积神经网络对mnist数据集进行分类_利用训练好的模型进行分类

    #coding:utf-8 import tensorflow as tf from PIL import Image,ImageFilter from tensorflow.examples.tut ...

  4. mxnet卷积神经网络训练MNIST数据集测试

    mxnet框架下超全手写字体识别—从数据预处理到网络的训练—模型及日志的保存 import numpy as np import mxnet as mx import logging logging. ...

  5. TensorFlow——LSTM长短期记忆神经网络处理Mnist数据集

    1.RNN(Recurrent Neural Network)循环神经网络模型 详见RNN循环神经网络:https://www.cnblogs.com/pinard/p/6509630.html 2. ...

  6. TensorFlow构建卷积神经网络/模型保存与加载/正则化

    TensorFlow 官方文档:https://www.tensorflow.org/api_guides/python/math_ops # Arithmetic Operators import ...

  7. 使用TensorFlow的卷积神经网络识别自己的单个手写数字,填坑总结

    折腾了几天,爬了大大小小若干的坑,特记录如下.代码在最后面. 环境: Python3.6.4 + TensorFlow 1.5.1 + Win7 64位 + I5 3570 CPU 方法: 先用MNI ...

  8. day-16 CNN卷积神经网络算法之Max pooling池化操作学习

    利用CNN卷积神经网络进行训练时,进行完卷积运算,还需要接着进行Max pooling池化操作,目的是在尽量不丢失图像特征前期下,对图像进行downsampling. 首先看下max pooling的 ...

  9. TensorFlow实现卷积神经网络

    1 卷积神经网络简介 在介绍卷积神经网络(CNN)之前,我们需要了解全连接神经网络与卷积神经网络的区别,下面先看一下两者的结构,如下所示: 图1 全连接神经网络与卷积神经网络结构 虽然上图中显示的全连 ...

随机推荐

  1. AC自动机及其模板

    模板 #include<queue> #include<stdio.h> #include<string.h> using namespace std; ; ; ; ...

  2. 货币系统 Money Systems

    母牛们不但创建了它们自己的政府而且选择了建立了自己的货币系统.由于它们特殊的思考方式,它们对货币的数值感到好奇. 传统地,一个货币系统是由1,,, 或 ,, 和 100的单位面值组成的. 母牛想知道有 ...

  3. Leetcode 17. Letter Combinations of a Phone Number(水)

    17. Letter Combinations of a Phone Number Medium Given a string containing digits from 2-9 inclusive ...

  4. linux 搭建环境

    报错:cannot find valid baseurl for repo:base 解决办法: https://blog.csdn.net/banqgg/article/details/782560 ...

  5. find查找多种文件后缀

    find命令最常用的是查找某个文件,如: find ./ -name "test.txt" 则会在当前目录及子目录下查找test.txt文件 更常用的是查找某一类型的文件,如: f ...

  6. 5分钟让你知道什么是PKI

    转:https://www.cnblogs.com/jerain6312/p/8572841.html 前言 Public Key Infrastructure(PKI),中文叫做公开密钥基础设施,也 ...

  7. Android操作系统中11种传感器的介绍【转】

    本文转载自:http://www.oschina.net/question/163910_28354 在Android2.3 gingerbread系统中,google提供了11种传感器供应用层使用. ...

  8. RAC容灾演练

    RAC容灾演练:在节点一进行验证:步骤 操作命令关闭步骤 检测RAC集群资源状态 crsctl status resource -t 关闭监听 srvctl stop listener -n < ...

  9. 004-unity3d MonoBehaviour脚本方法简介

    一.MonoBehaviour 1.公共方法 CancelInvoke Cancels all Invoke calls on this MonoBehaviour. Invoke Invokes t ...

  10. VMware 虚拟化编程(10) — VMware 数据块修改跟踪技术 CBT

    目录 目录 前文列表 数据块修改跟踪技术 CBT 为虚拟机开启 CBT CBT 修改数据块偏移量获取函数 QueryChangedDiskAreas changeId 一个 QueryChangedD ...