python操作SQL
pymysql
pymsql是Python中操作MySQL的模块,其使用方法和MySQLdb几乎相同
一、下载安装
pip3 install pymysql
二、操作使用
1、执行SQL
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql # 创建连接
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='', db='t1')
# 创建游标
cursor = conn.cursor() # 执行SQL,并返回收影响行数
effect_row = cursor.execute("update hosts set host = '1.1.1.2'") # 执行SQL,并返回受影响行数
#effect_row = cursor.execute("update hosts set host = '1.1.1.2' where nid > %s", (1,)) # 执行SQL,并返回受影响行数
#effect_row = cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)]) # 提交,不然无法保存新建或者修改的数据
conn.commit() # 关闭游标
cursor.close()
# 关闭连接
conn.close()
2、获取新创建数据自增ID
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='', db='t1')
cursor = conn.cursor()
cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)])
conn.commit()
cursor.close()
conn.close() # 获取最新自增ID
new_id = cursor.lastrowid
3、获取查询数据
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='', db='t1')
cursor = conn.cursor()
cursor.execute("select * from hosts") # 获取第一行数据
row_1 = cursor.fetchone() # 获取前n行数据
# row_2 = cursor.fetchmany(3)
# 获取所有数据
# row_3 = cursor.fetchall() conn.commit()
cursor.close()
conn.close()
注:在fetch数据时按照顺序进行,可以使用cursor.scroll(num,mode)来移动游标位置,如:
- cursor.scroll(1,mode='relative') # 相对当前位置移动
- cursor.scroll(2,mode='absolute') # 相对绝对位置移动
4、fetch数据类型关于默认获取的数据是元祖类型,如果想要或者字典类型的数据,即:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='', db='t1') # 游标设置为字典类型
cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
r = cursor.execute("call p1()") result = cursor.fetchone() conn.commit()
cursor.close()
conn.close()
SQLAlchemy
SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数据API执行SQL并获取执行结果。
安装:
pip3 install SQLAlchemy
SQLAlchemy本身无法操作数据库,其必须以来pymsql等第三方插件,Dialect用于和数据API进行交流,根据配置文件的不同调用不同的数据库API,从而实现对数据库的操作,如:
MySQL-Python
mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname> pymysql
mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>] MySQL-Connector
mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname> cx_Oracle
oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...] 更多详见:http://docs.sqlalchemy.org/en/latest/dialects/index.html
一、内部处理
使用 Engine/ConnectionPooling/Dialect 进行数据库操作,Engine使用ConnectionPooling连接数据库,然后再通过Dialect执行SQL语句。
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy import create_engine engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5) # 执行SQL
# cur = engine.execute(
# "INSERT INTO hosts (host, color_id) VALUES ('1.1.1.22', 3)"
# ) # 新插入行自增ID
# cur.lastrowid # 执行SQL
# cur = engine.execute(
# "INSERT INTO hosts (host, color_id) VALUES(%s, %s)",[('1.1.1.22', 3),('1.1.1.221', 3),]
# ) # 执行SQL
# cur = engine.execute(
# "INSERT INTO hosts (host, color_id) VALUES (%(host)s, %(color_id)s)",
# host='1.1.1.99', color_id=3
# ) # 执行SQL
# cur = engine.execute('select * from hosts')
# 获取第一行数据
# cur.fetchone()
# 获取第n行数据
# cur.fetchmany(3)
# 获取所有数据
# cur.fetchall()
二、ORM功能使用
使用 ORM/Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 所有组件对数据进行操作。根据类创建对象,对象转换成SQL,执行SQL。
1、创建表
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5) Base = declarative_base() # 创建单表
class Users(Base):
__tablename__ = 'users'
id = Column(Integer, primary_key=True)
name = Column(String(32))
extra = Column(String(16)) __table_args__ = (
UniqueConstraint('id', 'name', name='uix_id_name'),
Index('ix_id_name', 'name', 'extra'),
) # 一对多
class Favor(Base):
__tablename__ = 'favor'
nid = Column(Integer, primary_key=True)
caption = Column(String(50), default='red', unique=True) class Person(Base):
__tablename__ = 'person'
nid = Column(Integer, primary_key=True)
name = Column(String(32), index=True, nullable=True)
favor_id = Column(Integer, ForeignKey("favor.nid")) # 多对多
class Group(Base):
__tablename__ = 'group'
id = Column(Integer, primary_key=True)
name = Column(String(64), unique=True, nullable=False)
port = Column(Integer, default=22) class Server(Base):
__tablename__ = 'server' id = Column(Integer, primary_key=True, autoincrement=True)
hostname = Column(String(64), unique=True, nullable=False) class ServerToGroup(Base):
__tablename__ = 'servertogroup'
nid = Column(Integer, primary_key=True, autoincrement=True)
server_id = Column(Integer, ForeignKey('server.id'))
group_id = Column(Integer, ForeignKey('group.id')) def init_db():
Base.metadata.create_all(engine) def drop_db():
Base.metadata.drop_all(engine)
注:设置外检的另一种方式 ForeignKeyConstraint(['other_id'], ['othertable.other_id'])
2、操作表
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5) Base = declarative_base() # 创建单表
class Users(Base):
__tablename__ = 'users'
id = Column(Integer, primary_key=True)
name = Column(String(32))
extra = Column(String(16)) __table_args__ = (
UniqueConstraint('id', 'name', name='uix_id_name'),
Index('ix_id_name', 'name', 'extra'),
) def __repr__(self):
return "%s-%s" %(self.id, self.name) # 一对多
class Favor(Base):
__tablename__ = 'favor'
nid = Column(Integer, primary_key=True)
caption = Column(String(50), default='red', unique=True) def __repr__(self):
return "%s-%s" %(self.nid, self.caption) class Person(Base):
__tablename__ = 'person'
nid = Column(Integer, primary_key=True)
name = Column(String(32), index=True, nullable=True)
favor_id = Column(Integer, ForeignKey("favor.nid"))
# 与生成表结构无关,仅用于查询方便
favor = relationship("Favor", backref='pers') # 多对多
class ServerToGroup(Base):
__tablename__ = 'servertogroup'
nid = Column(Integer, primary_key=True, autoincrement=True)
server_id = Column(Integer, ForeignKey('server.id'))
group_id = Column(Integer, ForeignKey('group.id'))
group = relationship("Group", backref='s2g')
server = relationship("Server", backref='s2g') class Group(Base):
__tablename__ = 'group'
id = Column(Integer, primary_key=True)
name = Column(String(64), unique=True, nullable=False)
port = Column(Integer, default=22)
# group = relationship('Group',secondary=ServerToGroup,backref='host_list') class Server(Base):
__tablename__ = 'server' id = Column(Integer, primary_key=True, autoincrement=True)
hostname = Column(String(64), unique=True, nullable=False) def init_db():
Base.metadata.create_all(engine) def drop_db():
Base.metadata.drop_all(engine) Session = sessionmaker(bind=engine)
session = Session()
表结构加数据库连接
obj = Users(name="alex0", extra='sb')
session.add(obj)
session.add_all([
Users(name="alex1", extra='sb'),
Users(name="alex2", extra='sb'),
])
session.commit()
增
session.query(Users).filter(Users.id > 2).delete()
session.commit()
删
session.query(Users).filter(Users.id > 2).update({"name" : ""})
session.query(Users).filter(Users.id > 2).update({Users.name: Users.name + ""}, synchronize_session=False)
session.query(Users).filter(Users.id > 2).update({"num": Users.num + 1}, synchronize_session="evaluate")
session.commit()
改
ret = session.query(Users).all()
ret = session.query(Users.name, Users.extra).all()
ret = session.query(Users).filter_by(name='alex').all()
ret = session.query(Users).filter_by(name='alex').first()
查
# 条件
ret = session.query(Users).filter_by(name='alex').all()
ret = session.query(Users).filter(Users.id > 1, Users.name == 'eric').all()
ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == 'eric').all()
ret = session.query(Users).filter(Users.id.in_([1,3,4])).all()
ret = session.query(Users).filter(~Users.id.in_([1,3,4])).all()
ret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name='eric'))).all()
from sqlalchemy import and_, or_
ret = session.query(Users).filter(and_(Users.id > 3, Users.name == 'eric')).all()
ret = session.query(Users).filter(or_(Users.id < 2, Users.name == 'eric')).all()
ret = session.query(Users).filter(
or_(
Users.id < 2,
and_(Users.name == 'eric', Users.id > 3),
Users.extra != ""
)).all() # 通配符
ret = session.query(Users).filter(Users.name.like('e%')).all()
ret = session.query(Users).filter(~Users.name.like('e%')).all() # 限制
ret = session.query(Users)[1:2] # 排序
ret = session.query(Users).order_by(Users.name.desc()).all()
ret = session.query(Users).order_by(Users.name.desc(), Users.id.asc()).all() # 分组
from sqlalchemy.sql import func ret = session.query(Users).group_by(Users.extra).all()
ret = session.query(
func.max(Users.id),
func.sum(Users.id),
func.min(Users.id)).group_by(Users.name).all() ret = session.query(
func.max(Users.id),
func.sum(Users.id),
func.min(Users.id)).group_by(Users.name).having(func.min(Users.id) >2).all() # 连表 ret = session.query(Users, Favor).filter(Users.id == Favor.nid).all() ret = session.query(Person).join(Favor).all() ret = session.query(Person).join(Favor, isouter=True).all() # 组合
q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union(q2).all() q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union_all(q2).all()
其他
python操作SQL的更多相关文章
- 笔记:Python操作sql
python操作mysql步骤: 创建connect连接 conn = connect(host='127.0.0.1', port=3306, user='root', password='1234 ...
- Python 学习笔记:Python 操作 SQL Server 数据库
最近要将数据写到数据库里,学习了一下如何用 Python 来操作 SQL Server 数据库. 一.连接数据库: 首先,我们要连接 SQL Server 数据库,需要安装 pymssql 这个第三方 ...
- Python 操作 SQL 数据库 (ORCAL)
MySQLdb.connect是python 连接MySQL数据库的方法,在Python中 import MySQLdb即可使用,至于connect中的参数很简单:host:MySQL服务器名user ...
- python操作sql server2008 pyodbc
使用Python通过PyODBC连接数据的注意事项 今天使者用PyODBC连接数据库,试了很久才出来,现把一些心得体会和大家分享! 一.PyODBC的下载地址: http://code.google. ...
- python 操作数据库的常用SQL命令
这俩天在学习PYTHON操作数据库的知识.其实基本SQL命令是与以前学习的MYSQL命令一致,只是增加了一些PYTHON语句. 1,安装pymysql,并导入. import pymysql 2,因为 ...
- day40:python操作mysql:pymysql模块&SQL注入攻击
目录 part1:用python连接mysql 1.用python连接mysql的基本语法 2.用python 创建&删除表 3.用python操作事务处理 part2:sql注入攻击 1.s ...
- 多表查询思路、navicat可视化软件、python操作MySQL、SQL注入问题以及其他补充知识
昨日内容回顾 外键字段 # 就是用来建立表与表之间的关系的字段 表关系判断 # 一对一 # 一对多 # 多对多 """通过换位思考判断""" ...
- python操作MySQL、事务、SQL注入问题
python操作MySQL python中支持操作MySQl的模块很多 其中最常见就是'pymysql' # 属于第三方模块 pip3 install pymysql # 基本使用 import py ...
- python操作MySQL,SQL注入的问题,SQL语句补充,视图触发器存储过程,事务,流程控制,函数
python操作MySQL 使用过程: 引用API模块 获取与数据库的连接 执行sql语句与存储过程 关闭数据库连接 由于能操作MySQL的模块是第三方模块,我们需要pip安装. pip3 insta ...
随机推荐
- Java三大框架 介绍
三大框架:Struts+hibernate+spring Java三大框架主要用来做WEN应用. Struts主要负责表示层的显示 Spring利用它的IOC和AOP来处理控制业务(负责对数据库的操作 ...
- 复习sql第三次
1.层次型数据库以"树"结构表示数据库中数据间的关系:网状型以"图"结构表示数据库中数据间的关系:关系型数据库以"二维表"结构表示数据库中数 ...
- .net 网络编程
1.首先说下计算机网络中的TCP/IP参考模型 TCP/IP把网络分为5层,每一层负责完成不同的功能 1)应用层:传输报文,提供各种网络应用,有FTP.SMTP.HTTP等协议 2)运输层:传输报文段 ...
- 【WP开发】记录屏幕操作
在某些应用中,比如游戏,有时候需要将用户的操作记录下来.ScreenCapture类提供了这个功能.但必须注意的是:此屏幕记录功能只对当前应用程序的屏幕有效,即只有当前应用程序在前台运行时才有效. 与 ...
- 深入理解DOM事件类型系列第四篇——剪贴板事件
× 目录 [1]定义 [2]对象方法 [3]应用 前面的话 剪贴板操作可能看起来不起眼,但是却十分有用,可以增强用户体验,方便用户操作.本文将详细介绍剪贴板事件 定义 剪贴板操作包括剪切(cut).复 ...
- 创建第一个 vlan network "vlan100" - 每天5分钟玩转 OpenStack(94)
上一节我们在 ML2 配置中 enable 了 vlan network,今天将创建 vlan100 并讨论底层网络变化. 打开菜单 Admin -> Networks,点击 “Create N ...
- 升级到Windows10
1.Windows10的优点 2.需要安装的软件 实用软件: Firefox浏览器 Chrome浏览器 有道云笔记 Adobe Reader Adobe Flash Adobe PhotoShop 编 ...
- WebService中使用Aspose.Cells.dll
首先,目前我是在Json里面使用的,然后关于HTML+WebService+Json怎么使用,可以看看Jsonp跨域的相关例子. 本次的实现原理是:通过HTML传送参数到WebService,然后在W ...
- 1Z0-053 争议题目解析520
1Z0-053 争议题目解析520 考试科目:1Z0-053 题库版本:V13.02 题库中原题为: 520.Which of the following are not disabled by de ...
- 【集合框架】JDK1.8源码分析HashSet && LinkedHashSet(八)
一.前言 分析完了List的两个主要类之后,我们来分析Set接口下的类,HashSet和LinkedHashSet,其实,在分析完HashMap与LinkedHashMap之后,再来分析HashSet ...