tarjan-无向图(求割点)
一、基本概念
1、割点:无向连通图中,如果删除某点后,图变成不连通,则称改点为割点。
2、桥:无向连通图中,如果去掉某条边后,整张无向图会分成两部分(即整张图不连通),这样的一条边成为桥。
3、点双连通分量:无割点的极大连通子图
任意两点间都有⾄至少两条不不经过相同边的路径
4、边双连通分量:无割边的极大连通子图
任意两点间都有⾄至少两条(除起点和终点外)不不经过相同点的路径
二、tarjan求割点
1)当前节点为树根时,成为割点的条件是“要有多于一个子树”(如果只有一棵子树,去掉这个点也没有影响,如果有两颗子树,去掉这个点,两颗子树就不连通了)
2)当前节点不是树根的时候,条件是“low [ v ] >= dfn [ u ] ”,也就是在u之后遍历的点,能够向上翻,最多到u。(如果能翻到u的上方,那就有环了,去掉u之后,图仍然连通。)所以,保证v向上翻最多到u才可以
#include<cstdio>
#include<algorithm>
using namespace std; inline int read()
{
int sum = ,p = ;
char ch = getchar();
while(ch < '' || ch > '')
{
if(ch == '-')
p = -;
ch = getchar();
}
while(ch >= '' && ch <= '')
{
(sum *= ) += ch - '';
ch = getchar();
}
return sum * p;
} const int maxn = ,maxm = ;
int n,m,tot;
int dfn[maxn],low[maxn],tim;
int cnt,head[maxn];
struct edge
{
int nxt,to;
}e[maxm * ];
bool mrk[maxn]; void add(int x,int y)
{
e[++cnt].nxt = head[x];
e[cnt].to = y;
head[x] = cnt;
} void tarjan(int u,int fa)
{
dfn[u] = low[u] = ++tim;
int child = ;
for(int i = head[u];i;i = e[i].nxt)
{
int v = e[i].to;
if(!dfn[v])
{
tarjan(v,fa);
low[u] = min(low[u],low[v]);
if(low[v] >= dfn[u] && u != fa)
mrk[u] = true;
if(u == fa)
child++;
}
low[u] = min(low[u],dfn[v]);
}
if(child >= && u == fa)
mrk[u] = true;
} int main()
{
n = read(),m = read();
for(int i = ;i <= m;i++)
{
int x = read(),y = read();
add(x,y);
add(y,x);
}
for(int i = ;i <= n;i++)
if(!dfn[i])
tarjan(i,i);
for(int i = ;i <= n;i++)
if(mrk[i])
tot++;
printf("%d\n",tot);
for(int i = ;i <= n;i++)
if(mrk[i])
printf("%d ",i);
return ;
}
tarjan-无向图(求割点)的更多相关文章
- uva 315 Network(无向图求割点)
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- Tarjan算法求割点
(声明:以下图片来源于网络) Tarjan算法求出割点个数 首先来了解什么是连通图 在图论中,连通图基于连通的概念.在一个无向图 G 中,若从顶点i到顶点j有路径相连(当然从j到i也一定有路径),则称 ...
- 【并查集缩点+tarjan无向图求桥】Where are you @牛客练习赛32 D
目录 [并查集缩点+tarjan无向图求桥]Where are you @牛客练习赛32 D PROBLEM SOLUTION CODE [并查集缩点+tarjan无向图求桥]Where are yo ...
- UVA 315 Network (模板题)(无向图求割点)
<题目链接> 题目大意: 给出一个无向图,求出其中的割点数量. 解题分析: 无向图求割点模板题. 一个顶点u是割点,当且仅当满足 (1) u为树根,且u有多于一个子树. (2) u不为树根 ...
- Tarjan无向图的割点和桥(割边)全网详解&算法笔记&通俗易懂
更好的阅读体验&惊喜&原文链接 感谢@yxc的腿部挂件 大佬,指出本文不够严谨的地方,万分感谢! Tarjan无向图的割点和桥(割边) 导言 在掌握这个算法前,咱们有几个先决条件. [ ...
- Tarjan应用:求割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)【转】【修改】
一.基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成 ...
- (转)Tarjan应用:求割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)
基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个 ...
- 无向图求割点 UVA 315 Network
输入数据处理正确其余的就是套强联通的模板了 #include <iostream> #include <cstdlib> #include <cstdio> #in ...
- tarjan算法求割点cojs 8
tarjan求割点:cojs 8. 备用交换机 ★★ 输入文件:gd.in 输出文件:gd.out 简单对比时间限制:1 s 内存限制:128 MB [问题描述] n个城市之间有通讯网 ...
- (连通图 模板题 无向图求割点)Network --UVA--315(POJ--1144)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
随机推荐
- ECMAScript基本语法——⑤运算符 一元运算符
++自增 在前先自增,再运算 在后先运算,再自增 --自减 在前先自减,再运算 在后先运算,再自减 +正号,-负号.表示数字的正负 注意:在JavaScript中,如果运算数不是运算符要求的类型, 那 ...
- DE1_MSEL
基础的一般实验:01001(现在用的)或10010 马上换linux,做个记录: sd卡启动linux系统时,启动开关0至4位拨至00000
- scrapy爬虫保存数据
1.数据保存为TXT 打开Pipeline.py import codecs import os import json import pymysql class CoolscrapyPipeline ...
- 在 linux 上运行 oracle sql脚本
方法一 su - oracle //切换到oracle用户模式下 sqlplus /nolog //登录sqlplus connect /as sysdba; //连接orcale @sql脚本路 ...
- 参考 ZTree 加载大数据量。加载慢问题解析
参考 ZTree 加载大数据量. 1.一次性加载大数据量加载说明 1).zTree v3.x 针对大数据量一次性加载进行了更深入的优化,实现了延迟加载功能,即不展开的节点不创建子节点的 DOM. 2) ...
- MYSQL入门总结
创建数据库及创建表 create schema/database ttest(名字); //创建数据库 create table ttest(建好的数据库名字).new_table(表名字) ( a ...
- JQ 遍历--(祖先,后代,同胞,过滤)
祖先 <style> .one,.one *{ display: block; border: 2px solid lightgrey; color: lightgrey; padding ...
- 第四十一篇 入门机器学习——Numpy的基本操作——聚合操作
No.1. 对向量元素求和使用np.sum,也可以使用类似big_array.sum()的方式 No.2. 对向量元素求最小值使用np.min,求最大值使用np.max,也可以使用类似big_arra ...
- AcWing 794. 高精度除法
https://www.acwing.com/problem/content/796/ #include<bits/stdc++.h> using namespace std; // A/ ...
- html集合
<!DOCTYPE> //声明文档类型 <!DOCTYPE> 声明必须是 HTML 文档的第一行,位于 <html> 标签之前. <!DOCTYPE> ...