tarjan-无向图(求割点)
一、基本概念
1、割点:无向连通图中,如果删除某点后,图变成不连通,则称改点为割点。
2、桥:无向连通图中,如果去掉某条边后,整张无向图会分成两部分(即整张图不连通),这样的一条边成为桥。
3、点双连通分量:无割点的极大连通子图
任意两点间都有⾄至少两条不不经过相同边的路径
4、边双连通分量:无割边的极大连通子图
任意两点间都有⾄至少两条(除起点和终点外)不不经过相同点的路径
二、tarjan求割点
1)当前节点为树根时,成为割点的条件是“要有多于一个子树”(如果只有一棵子树,去掉这个点也没有影响,如果有两颗子树,去掉这个点,两颗子树就不连通了)
2)当前节点不是树根的时候,条件是“low [ v ] >= dfn [ u ] ”,也就是在u之后遍历的点,能够向上翻,最多到u。(如果能翻到u的上方,那就有环了,去掉u之后,图仍然连通。)所以,保证v向上翻最多到u才可以
#include<cstdio>
#include<algorithm>
using namespace std; inline int read()
{
int sum = ,p = ;
char ch = getchar();
while(ch < '' || ch > '')
{
if(ch == '-')
p = -;
ch = getchar();
}
while(ch >= '' && ch <= '')
{
(sum *= ) += ch - '';
ch = getchar();
}
return sum * p;
} const int maxn = ,maxm = ;
int n,m,tot;
int dfn[maxn],low[maxn],tim;
int cnt,head[maxn];
struct edge
{
int nxt,to;
}e[maxm * ];
bool mrk[maxn]; void add(int x,int y)
{
e[++cnt].nxt = head[x];
e[cnt].to = y;
head[x] = cnt;
} void tarjan(int u,int fa)
{
dfn[u] = low[u] = ++tim;
int child = ;
for(int i = head[u];i;i = e[i].nxt)
{
int v = e[i].to;
if(!dfn[v])
{
tarjan(v,fa);
low[u] = min(low[u],low[v]);
if(low[v] >= dfn[u] && u != fa)
mrk[u] = true;
if(u == fa)
child++;
}
low[u] = min(low[u],dfn[v]);
}
if(child >= && u == fa)
mrk[u] = true;
} int main()
{
n = read(),m = read();
for(int i = ;i <= m;i++)
{
int x = read(),y = read();
add(x,y);
add(y,x);
}
for(int i = ;i <= n;i++)
if(!dfn[i])
tarjan(i,i);
for(int i = ;i <= n;i++)
if(mrk[i])
tot++;
printf("%d\n",tot);
for(int i = ;i <= n;i++)
if(mrk[i])
printf("%d ",i);
return ;
}
tarjan-无向图(求割点)的更多相关文章
- uva 315 Network(无向图求割点)
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- Tarjan算法求割点
(声明:以下图片来源于网络) Tarjan算法求出割点个数 首先来了解什么是连通图 在图论中,连通图基于连通的概念.在一个无向图 G 中,若从顶点i到顶点j有路径相连(当然从j到i也一定有路径),则称 ...
- 【并查集缩点+tarjan无向图求桥】Where are you @牛客练习赛32 D
目录 [并查集缩点+tarjan无向图求桥]Where are you @牛客练习赛32 D PROBLEM SOLUTION CODE [并查集缩点+tarjan无向图求桥]Where are yo ...
- UVA 315 Network (模板题)(无向图求割点)
<题目链接> 题目大意: 给出一个无向图,求出其中的割点数量. 解题分析: 无向图求割点模板题. 一个顶点u是割点,当且仅当满足 (1) u为树根,且u有多于一个子树. (2) u不为树根 ...
- Tarjan无向图的割点和桥(割边)全网详解&算法笔记&通俗易懂
更好的阅读体验&惊喜&原文链接 感谢@yxc的腿部挂件 大佬,指出本文不够严谨的地方,万分感谢! Tarjan无向图的割点和桥(割边) 导言 在掌握这个算法前,咱们有几个先决条件. [ ...
- Tarjan应用:求割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)【转】【修改】
一.基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成 ...
- (转)Tarjan应用:求割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)
基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个 ...
- 无向图求割点 UVA 315 Network
输入数据处理正确其余的就是套强联通的模板了 #include <iostream> #include <cstdlib> #include <cstdio> #in ...
- tarjan算法求割点cojs 8
tarjan求割点:cojs 8. 备用交换机 ★★ 输入文件:gd.in 输出文件:gd.out 简单对比时间限制:1 s 内存限制:128 MB [问题描述] n个城市之间有通讯网 ...
- (连通图 模板题 无向图求割点)Network --UVA--315(POJ--1144)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
随机推荐
- mybatis-plus - buildSqlSessionFactory()
一. buildSqlSessionFactory() mybatis-plus 同样的是调用 factory.getObject() 方法来进行 SqlSessionFactory 创建的. 然后 ...
- Introduction to SQL
目录 SELECTING SELECTing single columns SELECTing multiple columns select all SELECT DISTINCT Learning ...
- AcWing 1014. 登山
#include<iostream> using namespace std ; ; int f[N],g[N]; int w[N]; int main() { int n; cin> ...
- LED Craft Light - How To Solve: Home Decoration Lighting
Home décor usually comes with a certain period of theme or a specific style of furniture, which will ...
- FPGA设计的注意事项
设计文档 一个完整的软件是由程序. 数据和文档三部分组成的. 在FPGA电路设计中, 撰写完善的设计文档是非常重要的. 对于一个比较复杂的设计来说, 各个子单元的功能各不相同, 实现的方法也不一样,各 ...
- servlet中doGet()和doPost()的用法
转自:https://blog.csdn.net/qq_38963960/article/details/79468182 1.servlet中doGet()和doPost()的用法 一般来说我们是用 ...
- python之路之面向对象
一.编程 1.面向对象编程和函数式编程 a.面向对象编程之self(重点) b.面向对象的封装 c.继承 (1)继承的优先级 d.重载 e.多态 2.查看socketserver源码执行过程
- Layui之动态循环遍历出的富文本编辑器显示
这篇记得是工作中的例子 描述: 平常的富文本显示都是根据静态的html获取id来显示,比如: <textarea class="layui-textarea" id=&quo ...
- Explainable ML
定义: 不仅可以(分类),还要输出分类的理由是什么(局部),以及某一个分类的判断标准(全局) 局部: silence map. 把{x1.....xn}中每一个像素加一个偏移量之后,得到的y偏移量与x ...
- <meta name="viewport" content="width=device-width,initial-scale=1,minimum-scale=1,maximum-scale=1,user-scalable=no"/>
<meta name="viewport" content="width=device-width,initial-scale=1,minimum-scale=1, ...