acm数论之旅--数论四大定理
ACM数论之旅5---数论四大定理(你怕不怕(☆゚∀゚)老实告诉我)
(本篇无证明,想要证明的去找度娘)o(*≧▽≦)ツ
----------数论四大定理---------
数论四大定理:
1.威尔逊定理
2.欧拉定理
3.孙子定理(中国剩余定理)
4.费马小定理
(提示:以后出现(mod p)就表示这个公式是在求余p的条件下成立)
1.威尔逊定理:(PS:威尔逊是个厉害人)
当且仅当p为素数时:( p -1 )! ≡ -1 ( mod p )
或者这么写( p -1 )! ≡ p-1 ( mod p )
或者说
若p为质数,则p能被(p-1)!+1整除
在初等数论中
这是威尔逊给出了判定一个自然数是否为 素数 的 充分必要条件
但是由于阶乘是呈爆炸增长的,其结论对于实际操作意义不大。(´・ω・`)(威尔逊表示很伤心)
2.欧拉定理:(PS:欧拉是个厉害人)
3.孙子定理(中国剩余定理):(PS:孙子是个厉害人。。。这话怎么在哪里听过( ・◇・)?好耳熟)
孙子定理,又称中国剩余定理。
公元前后的《孙子算经》中有“物不知数”问题:“今有物不知其数,三三数之余二 ,五五数之余三 ,七七数之余二,问物几何?”答为“23”。
就是说,有一个东西不知道有多少个,但是它求余3等于2,求余5等于3,求余7等于2,问这个东西有多少个?”答为“23”。

中国剩余定理说明:假设整数m1,m2, ... ,mn两两互质,则对任意的整数:a1,a2, ... ,an,方程组 (S)有解
至于怎么求解,以后再讲
4.费马小定理:(PS:费马是个厉害人。。。好了最后一遍,不玩了)
顺便一提,费马大定理
acm数论之旅--数论四大定理的更多相关文章
- acm数论之旅--中国剩余定理
ACM数论之旅9---中国剩余定理(CRT)(壮哉我大中华╰(*°▽°*)╯) 中国剩余定理,又名孙子定理o(*≧▽≦)ツ 能求解什么问题呢? 问题: 一堆物品 3个3个分剩2个 5个5个分剩3个 ...
- (暂时弃坑)(半成品)ACM数论之旅18---反演定理 第二回 Mobius反演(莫比乌斯反演)((づ ̄3 ̄)づ天才第一步,雀。。。。)
莫比乌斯反演也是反演定理的一种 既然我们已经学了二项式反演定理 那莫比乌斯反演定理与二项式反演定理一样,不求甚解,只求会用 莫比乌斯反演长下面这个样子(=・ω・=) d|n,表示n能够整除d,也就是d ...
- ACM数论之旅17---反演定理 第一回 二项式反演(神说要有光 于是就有了光(´・ω・`))
终于讲到反演定理了,反演定理这种东西记一下公式就好了,反正我是证明不出来的~(-o ̄▽ ̄)-o 首先,著名的反演公式 我先简单的写一下o( ̄ヘ ̄*o) 比如下面这个公式 f(n) = g(1) + g ...
- ACM数论之旅5---数论四大定理(你怕不怕(☆゚∀゚)老实告诉我)
(本篇无证明,想要证明的去找度娘)o(*≧▽≦)ツ ----------数论四大定理--------- 数论四大定理: 1.威尔逊定理 2.欧拉定理 3.孙子定理(中国剩余定理) 4.费马小定理 (提 ...
- acm数论之旅--欧拉函数的证明
随笔 - 20 文章 - 0 评论 - 73 ACM数论之旅7---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭) https://blog.csdn.net/chen_ze_hua ...
- acm数论之旅(转载) -- 逆元
ACM数论之旅6---数论倒数,又称逆元(我整个人都倒了( ̄﹏ ̄)) 数论倒数,又称逆元(因为我说习惯逆元了,下面我都说逆元) 数论中的倒数是有特别的意义滴 你以为a的倒数在数论中还是1/a吗 ( ...
- acm数论之旅--组合数(转载)
随笔 - 20 文章 - 0 评论 - 73 ACM数论之旅8---组合数(组合大法好(,,• ₃ •,,) ) 补充:全错排公式:https://blog.csdn.net/Carey_Lu/ ...
- acm数论之旅---扩展欧几里得算法
度娘百科说: 首先, ax+by = gcd(a, b) 这个公式肯定有解 (( •̀∀•́ )她说根据数论中的相关定理可以证明,反正我信了) 所以 ax+by = gcd(a, b) * k 也肯定 ...
- 数论初步(费马小定理) - Happy 2004
Description Consider a positive integer X,and let S be the sum of all positive integer divisors of 2 ...
随机推荐
- 题解【洛谷P1725】琪露诺
题面 典型的单调队列优化\(\text{DP}\)题. 不难想到设\(dp_i\)表示以\(i\)结尾能得到的最大冰冻指数. 这样设的转移方程也很简单:\(dp_i=\max\left\{ dp_j+ ...
- ArcGIS10:ArcGIS version not specified. You must call RuntimeManager.Bind before creating any ArcGIS
[网络转载] 今天将ArcGIS系列的软件从ArcGIS9.3.1升级到ArcGIS10,然后就使用VS创建一个简单的AE应用程序,然后拖放一个toolbar.LicenseControl以及MapC ...
- 前端必备 Nginx 配置
Nginx (engine x) 是一个轻量级高性能的HTTP和反向代理服务器,同时也是一个通用 代理服务器 (TCP/UDP/IMAP/POP3/SMTP),最初由俄罗斯人Igor Sysoev编写 ...
- util之Set
1.定义: Set<Integer>set = new TreeSet<Integer>(); 注意: TreeSet 是二差树实现的,Treeset中的数据是自动排好序的,不 ...
- 美化传奇NPC对话框添加图片显示实列
NPC对话框一般都是文字显示,有些GM想突出版本特色,在NPC对话框加些专业图片,彰显独特之处,其实这是很简单的.下面为你讲解美化传奇NPC对话框添加图片显示实列 我们要添加你要放入npc图片的补丁. ...
- ONESHELL
没有加 .ONESHELL 的时候,片段中的各行 shell 彼此独立. 加了 .ONESHELL 后,各行shell 可以看作一行 shell. <1> .PHONY: all all: ...
- 2019-2020-2 20174314王方正 《网络对抗》 Exp0 Kali安装
本博旨记录安装Kali的具体步骤. 一.Vmware的安装 略. 二.Vmware的配置 选择[文件]-[新建虚拟机]. 出现新建虚拟机导向,按照以下图示配置每一步.
- org.apache.httpcomponents.httpclient
apache org doc :http://hc.apache.org/httpcomponents-client-ga/tutorial/html/fundamentals.html#d5e49 ...
- 一些常用的js代码
跳转 window.location.href= 刷新 location.reload()
- const与#define的区别、优点
const与#define的区别 编译器处理方式不同 define宏是在预处理阶段展开. 补充:预处理器根据以#开头的命令,修改原始的程序.比如我们常见的#include <stdio.h> ...