TOYS
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 12015   Accepted: 5792

Description

Calculate the number of toys that land in each bin of a partitioned toy box.
Mom and dad have a problem - their child John never puts his toys
away when he is finished playing with them. They gave John a rectangular
box to put his toys in, but John is rebellious and obeys his parents by
simply throwing his toys into the box. All the toys get mixed up, and
it is impossible for John to find his favorite toys.

John's parents came up with the following idea. They put cardboard
partitions into the box. Even if John keeps throwing his toys into the
box, at least toys that get thrown into different bins stay separated.
The following diagram shows a top view of an example toy box.



For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.

Input

The
input file contains one or more problems. The first line of a problem
consists of six integers, n m x1 y1 x2 y2. The number of cardboard
partitions is n (0 < n <= 5000) and the number of toys is m (0
< m <= 5000). The coordinates of the upper-left corner and the
lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The
following n lines contain two integers per line, Ui Li, indicating that
the ends of the i-th cardboard partition is at the coordinates (Ui,y1)
and (Li,y2). You may assume that the cardboard partitions do not
intersect each other and that they are specified in sorted order from
left to right. The next m lines contain two integers per line, Xj Yj
specifying where the j-th toy has landed in the box. The order of the
toy locations is random. You may assume that no toy will land exactly on
a cardboard partition or outside the boundary of the box. The input is
terminated by a line consisting of a single 0.

Output

The
output for each problem will be one line for each separate bin in the
toy box. For each bin, print its bin number, followed by a colon and one
space, followed by the number of toys thrown into that bin. Bins are
numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate
the output of different problems by a single blank line.

Sample Input

5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0

Sample Output

0: 2
1: 1
2: 1
3: 1
4: 0
5: 1 0: 2
1: 2
2: 2
3: 2
4: 2

Hint

As the example illustrates, toys that fall on the boundary of the box are "in" the box.

Source

开始正经的学计算几何,恩,是的没错~

加油~

题意:给定一个长方形,在里面加上不相交的线,然后给若干点,求这些点落在哪个区域。

 #include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <math.h>
#include <algorithm>
#include <cctype>
#include <string>
#include <map>
#define N 500015
#define INF 1000000
#define ll long long
using namespace std;
struct Point
{
int x,y;
Point(){}
Point(int _x,int _y)
{
x = _x;y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
int operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
int operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
};
struct Line
{
Point s,e;
Line(){}
Line(Point _s,Point _e)
{
s = _s;e = _e;
}
}; int xmult(Point p0,Point p1,Point p2) //计算p0p1 X p0p2
{
return (p1-p0)^(p2-p0);
}
const int MAXN = ;
Line line[MAXN];
int ans[MAXN];
int main(void)
{
int n,m,x1,y1,x2,y2,i;
int ui,li;
int cnt = ;
while(scanf("%d",&n),n)
{
if(cnt == ) cnt = ;
else printf("\n");
scanf("%d %d %d %d %d",&m,&x1,&y1,&x2,&y2);
for(i = ; i < n; i++)
{
scanf("%d%d",&ui,&li);
line[i] = Line(Point(ui,y1),Point(li,y2));
}
line[n] = Line(Point(x2,y1),Point(x2,y2)); int x,y;
Point p;
memset(ans,,sizeof(ans)); while(m--)
{
scanf("%d %d",&x,&y);
p = Point(x,y);
int l = ,r = n,tmp = ;
while(l <= r)
{
int mid = (l + r)/;
if(xmult(p,line[mid].s,line[mid].e) < )
{
tmp = mid;
r = mid - ;
}
else
l = mid + ;
}
ans[tmp]++;
}
for(i = ; i <= n; i++)
printf("%d: %d\n",i,ans[i]);
}
return ;
}

poj 2318 TOYS(计算几何 点与线段的关系)的更多相关文章

  1. POJ 2318 TOYS(计算几何)

    跨产品的利用率推断点线段向左或向右,然后你可以2分钟 代码: #include <cstdio> #include <cstring> #include <algorit ...

  2. POJ 2318 TOYS(叉积+二分)

    题目传送门:POJ 2318 TOYS Description Calculate the number of toys that land in each bin of a partitioned ...

  3. 简单几何(点与线段的位置) POJ 2318 TOYS && POJ 2398 Toy Storage

    题目传送门 题意:POJ 2318 有一个长方形,用线段划分若干区域,给若干个点,问每个区域点的分布情况 分析:点和线段的位置判断可以用叉积判断.给的线段是排好序的,但是点是无序的,所以可以用二分优化 ...

  4. 【POJ】2318 TOYS ——计算几何+二分

    TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10281   Accepted: 4924 Description ...

  5. poj 2318 TOYS (二分+叉积)

    http://poj.org/problem?id=2318 TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 101 ...

  6. poj 2318 TOYS &amp; poj 2398 Toy Storage (叉积)

    链接:poj 2318 题意:有一个矩形盒子,盒子里有一些木块线段.而且这些线段坐标是依照顺序给出的. 有n条线段,把盒子分层了n+1个区域,然后有m个玩具.这m个玩具的坐标是已知的,问最后每一个区域 ...

  7. POJ 2318 TOYS && POJ 2398 Toy Storage(几何)

    2318 TOYS 2398 Toy Storage 题意 : 给你n块板的坐标,m个玩具的具体坐标,2318中板是有序的,而2398无序需要自己排序,2318要求输出的是每个区间内的玩具数,而231 ...

  8. 向量的叉积 POJ 2318 TOYS & POJ 2398 Toy Storage

    POJ 2318: 题目大意:给定一个盒子的左上角和右下角坐标,然后给n条线,可以将盒子分成n+1个部分,再给m个点,问每个区域内有多少各点 这个题用到关键的一步就是向量的叉积,假设一个点m在 由ab ...

  9. 2018.07.03 POJ 2318 TOYS(二分+简单计算几何)

    TOYS Time Limit: 2000MS Memory Limit: 65536K Description Calculate the number of toys that land in e ...

随机推荐

  1. 微信小程序前后台调用

    // pages/ruquestexer/index.js Page({ /** * 页面的初始数据 */ data: { }, getUserData:function(){ wx.request( ...

  2. 获取m,n之间的随机整数

    获取m,n之间的随机整数 代码去下:

  3. leetcode-142-环形链表②

    题目描述: 方法一:O(n) O(n) # Definition for singly-linked list. # class ListNode(object): # def __init__(se ...

  4. Mysql修改表备注, 列信息

    1.添加表和字段的注释 创建数据表的同时,给表和字段添加注释 -- 创建用户信息表 CREATE TABLE tb_user ( id INT AUTO_INCREMENT PRIMARY KEY C ...

  5. 菜鸟nginx源码剖析数据结构篇(九) 内存池ngx_pool_t[转]

    菜鸟nginx源码剖析数据结构篇(九) 内存池ngx_pool_t Author:Echo Chen(陈斌) Email:chenb19870707@gmail.com Blog:Blog.csdn. ...

  6. 使用jqselectable构建美化的select元素

    本文只对此插件的应用做一些探讨,本插件版权属于原作者,插件原始下载地址:http://www.jq22.com/jquery-info288 原插件也有些许不足之处,比如样式定义名称太过普通,容易和页 ...

  7. Linux 日期时间命令

    cal : 显示日历 -1 显示一个月的月历 -3 显示系统前一个月,当前月,下一个月的月历 -s  显示星期天为一个星期的第一天,默认的格式 -m 显示星期一为一个星期的第一天 -j  显示在当年中 ...

  8. 关于Collection接口和Map

    Iterable才是Collection的父接口.不是Iterator. Map,SortedMap属于接口类型,不可以new的方式创建对象. HashMap基于哈希表实现Map接口的类,并允许nul ...

  9. 工控安全入门(四)—— DNP3协议

    我们之前看过了法国施耐德的Modbus.德国西门子的S7comm,这次就让我们把目光投到美洲,看看加拿大的HARRIS的DNP3有什么特别之处. 这次选用的流量包部分来自w3h的gitbub: htt ...

  10. Delphi 设计模式:《HeadFirst设计模式》---行为模式之责任链模式

    模式解说 责任链模式是一种对象的行为模式,它将处理客户端请求的那些对象联成一条链,并沿着这条链传递请求,直到有一个对象处理它为止. 通常使用在以下场合 1 有多个对象可以处理一个请求,哪个对象处理该请 ...