TOYS
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 12015   Accepted: 5792

Description

Calculate the number of toys that land in each bin of a partitioned toy box.
Mom and dad have a problem - their child John never puts his toys
away when he is finished playing with them. They gave John a rectangular
box to put his toys in, but John is rebellious and obeys his parents by
simply throwing his toys into the box. All the toys get mixed up, and
it is impossible for John to find his favorite toys.

John's parents came up with the following idea. They put cardboard
partitions into the box. Even if John keeps throwing his toys into the
box, at least toys that get thrown into different bins stay separated.
The following diagram shows a top view of an example toy box.



For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.

Input

The
input file contains one or more problems. The first line of a problem
consists of six integers, n m x1 y1 x2 y2. The number of cardboard
partitions is n (0 < n <= 5000) and the number of toys is m (0
< m <= 5000). The coordinates of the upper-left corner and the
lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The
following n lines contain two integers per line, Ui Li, indicating that
the ends of the i-th cardboard partition is at the coordinates (Ui,y1)
and (Li,y2). You may assume that the cardboard partitions do not
intersect each other and that they are specified in sorted order from
left to right. The next m lines contain two integers per line, Xj Yj
specifying where the j-th toy has landed in the box. The order of the
toy locations is random. You may assume that no toy will land exactly on
a cardboard partition or outside the boundary of the box. The input is
terminated by a line consisting of a single 0.

Output

The
output for each problem will be one line for each separate bin in the
toy box. For each bin, print its bin number, followed by a colon and one
space, followed by the number of toys thrown into that bin. Bins are
numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate
the output of different problems by a single blank line.

Sample Input

5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0

Sample Output

0: 2
1: 1
2: 1
3: 1
4: 0
5: 1 0: 2
1: 2
2: 2
3: 2
4: 2

Hint

As the example illustrates, toys that fall on the boundary of the box are "in" the box.

Source

开始正经的学计算几何,恩,是的没错~

加油~

题意:给定一个长方形,在里面加上不相交的线,然后给若干点,求这些点落在哪个区域。

 #include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <math.h>
#include <algorithm>
#include <cctype>
#include <string>
#include <map>
#define N 500015
#define INF 1000000
#define ll long long
using namespace std;
struct Point
{
int x,y;
Point(){}
Point(int _x,int _y)
{
x = _x;y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
int operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
int operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
};
struct Line
{
Point s,e;
Line(){}
Line(Point _s,Point _e)
{
s = _s;e = _e;
}
}; int xmult(Point p0,Point p1,Point p2) //计算p0p1 X p0p2
{
return (p1-p0)^(p2-p0);
}
const int MAXN = ;
Line line[MAXN];
int ans[MAXN];
int main(void)
{
int n,m,x1,y1,x2,y2,i;
int ui,li;
int cnt = ;
while(scanf("%d",&n),n)
{
if(cnt == ) cnt = ;
else printf("\n");
scanf("%d %d %d %d %d",&m,&x1,&y1,&x2,&y2);
for(i = ; i < n; i++)
{
scanf("%d%d",&ui,&li);
line[i] = Line(Point(ui,y1),Point(li,y2));
}
line[n] = Line(Point(x2,y1),Point(x2,y2)); int x,y;
Point p;
memset(ans,,sizeof(ans)); while(m--)
{
scanf("%d %d",&x,&y);
p = Point(x,y);
int l = ,r = n,tmp = ;
while(l <= r)
{
int mid = (l + r)/;
if(xmult(p,line[mid].s,line[mid].e) < )
{
tmp = mid;
r = mid - ;
}
else
l = mid + ;
}
ans[tmp]++;
}
for(i = ; i <= n; i++)
printf("%d: %d\n",i,ans[i]);
}
return ;
}

poj 2318 TOYS(计算几何 点与线段的关系)的更多相关文章

  1. POJ 2318 TOYS(计算几何)

    跨产品的利用率推断点线段向左或向右,然后你可以2分钟 代码: #include <cstdio> #include <cstring> #include <algorit ...

  2. POJ 2318 TOYS(叉积+二分)

    题目传送门:POJ 2318 TOYS Description Calculate the number of toys that land in each bin of a partitioned ...

  3. 简单几何(点与线段的位置) POJ 2318 TOYS && POJ 2398 Toy Storage

    题目传送门 题意:POJ 2318 有一个长方形,用线段划分若干区域,给若干个点,问每个区域点的分布情况 分析:点和线段的位置判断可以用叉积判断.给的线段是排好序的,但是点是无序的,所以可以用二分优化 ...

  4. 【POJ】2318 TOYS ——计算几何+二分

    TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10281   Accepted: 4924 Description ...

  5. poj 2318 TOYS (二分+叉积)

    http://poj.org/problem?id=2318 TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 101 ...

  6. poj 2318 TOYS &amp; poj 2398 Toy Storage (叉积)

    链接:poj 2318 题意:有一个矩形盒子,盒子里有一些木块线段.而且这些线段坐标是依照顺序给出的. 有n条线段,把盒子分层了n+1个区域,然后有m个玩具.这m个玩具的坐标是已知的,问最后每一个区域 ...

  7. POJ 2318 TOYS && POJ 2398 Toy Storage(几何)

    2318 TOYS 2398 Toy Storage 题意 : 给你n块板的坐标,m个玩具的具体坐标,2318中板是有序的,而2398无序需要自己排序,2318要求输出的是每个区间内的玩具数,而231 ...

  8. 向量的叉积 POJ 2318 TOYS & POJ 2398 Toy Storage

    POJ 2318: 题目大意:给定一个盒子的左上角和右下角坐标,然后给n条线,可以将盒子分成n+1个部分,再给m个点,问每个区域内有多少各点 这个题用到关键的一步就是向量的叉积,假设一个点m在 由ab ...

  9. 2018.07.03 POJ 2318 TOYS(二分+简单计算几何)

    TOYS Time Limit: 2000MS Memory Limit: 65536K Description Calculate the number of toys that land in e ...

随机推荐

  1. [转]C#的扩展方法解说

    C#的扩展方法解说 扩展方法的目的就是为一个现有类型添加一个方法,现有类型既可以是int,string等数据类型,也可以是自定义的数据类型. 为数据类型的添加一个方法的理解:一般来说,int数据类型有 ...

  2. MongDB4.0-入门学习之运算符

    MongDB 4.0 入门学习之运算符 基本语法:db.collection.find({<key>:{$symbol:<value>}}) 条件查询匹配运算符 符号 描述 范 ...

  3. python mysql数据库中 json的存储

    首先数据库里的字段类型需要设置为json: 存储这个json时需要把这个json变为字符串,而且是最外层为单引号,内部字符串为双引号!如图:  所以python脚本中这个字段的字符串应该这样写: 得出 ...

  4. 服务器重启,自动重启httpd

    1. 手动重启 cd http ll cd /etc/httpd/   ll service httpd restart 2. 查看服务器内存使用情况 df -h 3. 自动重启 cat /etc/i ...

  5. R语言:表格的线图转化

    R语言:表格的线图转化 最先选取的是北京各区普通住宅成交十年(2016年及2006年)涨幅对比.这张图比较plain,主要拿来练习: 1.数据表格的基本整理及计算 2. 数据的初步分析 3.线图的基本 ...

  6. 第12章 SQL联接

    第12章 SQL联接 关系数据库的3个支柱:选择.投影和联接. 两种基本的连接同等联接和非同等联接. 源表和目标表有相同的名称的列,就可以在他们之间执行自然联接,而无需指定连接列. 自然join us ...

  7. VC:不支持尝试执行的操作

    问题描述: 基于CDialogEx的对话框工程.VS2010开发环境. 调试运行到OnInitDialog()的CDialogEx::OnInitDialog()方法的时候弹出提示窗口"不支 ...

  8. 如何转移Pycharm的设置或者缓存到其他盘

    因为Pycharm项目缓存C:\Users\wq\.PyCharm2017.2\system\caches下面的content.dat.storageData特别大,占用很多C盘空间,所以我就想办法, ...

  9. Mybatis编写配置文件时,需要注意配置节点的顺序

    mybatis-config.xml配置文件配置时,要注意节点顺序 <properties>...</properties> <settings>...</s ...

  10. 【python之路45】tornado的用法 (三)

    参考:https://www.cnblogs.com/sunshuhai/articles/6253815.html 一.cookie用法补充 1.cookie的应用场景 浏览器端保存的键值对,每次访 ...