TOYS
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 12015   Accepted: 5792

Description

Calculate the number of toys that land in each bin of a partitioned toy box.
Mom and dad have a problem - their child John never puts his toys
away when he is finished playing with them. They gave John a rectangular
box to put his toys in, but John is rebellious and obeys his parents by
simply throwing his toys into the box. All the toys get mixed up, and
it is impossible for John to find his favorite toys.

John's parents came up with the following idea. They put cardboard
partitions into the box. Even if John keeps throwing his toys into the
box, at least toys that get thrown into different bins stay separated.
The following diagram shows a top view of an example toy box.



For this problem, you are asked to determine how many toys fall into each partition as John throws them into the toy box.

Input

The
input file contains one or more problems. The first line of a problem
consists of six integers, n m x1 y1 x2 y2. The number of cardboard
partitions is n (0 < n <= 5000) and the number of toys is m (0
< m <= 5000). The coordinates of the upper-left corner and the
lower-right corner of the box are (x1,y1) and (x2,y2), respectively. The
following n lines contain two integers per line, Ui Li, indicating that
the ends of the i-th cardboard partition is at the coordinates (Ui,y1)
and (Li,y2). You may assume that the cardboard partitions do not
intersect each other and that they are specified in sorted order from
left to right. The next m lines contain two integers per line, Xj Yj
specifying where the j-th toy has landed in the box. The order of the
toy locations is random. You may assume that no toy will land exactly on
a cardboard partition or outside the boundary of the box. The input is
terminated by a line consisting of a single 0.

Output

The
output for each problem will be one line for each separate bin in the
toy box. For each bin, print its bin number, followed by a colon and one
space, followed by the number of toys thrown into that bin. Bins are
numbered from 0 (the leftmost bin) to n (the rightmost bin). Separate
the output of different problems by a single blank line.

Sample Input

5 6 0 10 60 0
3 1
4 3
6 8
10 10
15 30
1 5
2 1
2 8
5 5
40 10
7 9
4 10 0 10 100 0
20 20
40 40
60 60
80 80
5 10
15 10
25 10
35 10
45 10
55 10
65 10
75 10
85 10
95 10
0

Sample Output

0: 2
1: 1
2: 1
3: 1
4: 0
5: 1 0: 2
1: 2
2: 2
3: 2
4: 2

Hint

As the example illustrates, toys that fall on the boundary of the box are "in" the box.

Source

开始正经的学计算几何,恩,是的没错~

加油~

题意:给定一个长方形,在里面加上不相交的线,然后给若干点,求这些点落在哪个区域。

 #include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
#include <math.h>
#include <algorithm>
#include <cctype>
#include <string>
#include <map>
#define N 500015
#define INF 1000000
#define ll long long
using namespace std;
struct Point
{
int x,y;
Point(){}
Point(int _x,int _y)
{
x = _x;y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
int operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
int operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
};
struct Line
{
Point s,e;
Line(){}
Line(Point _s,Point _e)
{
s = _s;e = _e;
}
}; int xmult(Point p0,Point p1,Point p2) //计算p0p1 X p0p2
{
return (p1-p0)^(p2-p0);
}
const int MAXN = ;
Line line[MAXN];
int ans[MAXN];
int main(void)
{
int n,m,x1,y1,x2,y2,i;
int ui,li;
int cnt = ;
while(scanf("%d",&n),n)
{
if(cnt == ) cnt = ;
else printf("\n");
scanf("%d %d %d %d %d",&m,&x1,&y1,&x2,&y2);
for(i = ; i < n; i++)
{
scanf("%d%d",&ui,&li);
line[i] = Line(Point(ui,y1),Point(li,y2));
}
line[n] = Line(Point(x2,y1),Point(x2,y2)); int x,y;
Point p;
memset(ans,,sizeof(ans)); while(m--)
{
scanf("%d %d",&x,&y);
p = Point(x,y);
int l = ,r = n,tmp = ;
while(l <= r)
{
int mid = (l + r)/;
if(xmult(p,line[mid].s,line[mid].e) < )
{
tmp = mid;
r = mid - ;
}
else
l = mid + ;
}
ans[tmp]++;
}
for(i = ; i <= n; i++)
printf("%d: %d\n",i,ans[i]);
}
return ;
}

poj 2318 TOYS(计算几何 点与线段的关系)的更多相关文章

  1. POJ 2318 TOYS(计算几何)

    跨产品的利用率推断点线段向左或向右,然后你可以2分钟 代码: #include <cstdio> #include <cstring> #include <algorit ...

  2. POJ 2318 TOYS(叉积+二分)

    题目传送门:POJ 2318 TOYS Description Calculate the number of toys that land in each bin of a partitioned ...

  3. 简单几何(点与线段的位置) POJ 2318 TOYS && POJ 2398 Toy Storage

    题目传送门 题意:POJ 2318 有一个长方形,用线段划分若干区域,给若干个点,问每个区域点的分布情况 分析:点和线段的位置判断可以用叉积判断.给的线段是排好序的,但是点是无序的,所以可以用二分优化 ...

  4. 【POJ】2318 TOYS ——计算几何+二分

    TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10281   Accepted: 4924 Description ...

  5. poj 2318 TOYS (二分+叉积)

    http://poj.org/problem?id=2318 TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 101 ...

  6. poj 2318 TOYS &amp; poj 2398 Toy Storage (叉积)

    链接:poj 2318 题意:有一个矩形盒子,盒子里有一些木块线段.而且这些线段坐标是依照顺序给出的. 有n条线段,把盒子分层了n+1个区域,然后有m个玩具.这m个玩具的坐标是已知的,问最后每一个区域 ...

  7. POJ 2318 TOYS && POJ 2398 Toy Storage(几何)

    2318 TOYS 2398 Toy Storage 题意 : 给你n块板的坐标,m个玩具的具体坐标,2318中板是有序的,而2398无序需要自己排序,2318要求输出的是每个区间内的玩具数,而231 ...

  8. 向量的叉积 POJ 2318 TOYS & POJ 2398 Toy Storage

    POJ 2318: 题目大意:给定一个盒子的左上角和右下角坐标,然后给n条线,可以将盒子分成n+1个部分,再给m个点,问每个区域内有多少各点 这个题用到关键的一步就是向量的叉积,假设一个点m在 由ab ...

  9. 2018.07.03 POJ 2318 TOYS(二分+简单计算几何)

    TOYS Time Limit: 2000MS Memory Limit: 65536K Description Calculate the number of toys that land in e ...

随机推荐

  1. pg总览

    一.编译安装初始化等 ./configure --prefix=/release --with-openssl --without-ldap --with-libxml - -enable-threa ...

  2. JSM 基础

    JMS即Java消息服务(Java Message Service)应用程序接口,是一个Java平台中关于面向消息中间件(MOM)的API,用于在两个应用程序之间,或分布式系统中发送消息,进行异步通信 ...

  3. 洛谷 P1941 飞扬的小鸟 (NOIP 2014)

    题面 题解 背包细节题,wa了一片,上升的过程我们可以看做一个完全背包(多重背包好像跑不过去),下降 过程是一个0/1背包,为了避免冲突应该先跑多重,先跑0/1就有可能产生这个点又上升又下降的 非法情 ...

  4. ps命令详解-转

    名称:ps使用权限:所有使用者使用方式:ps [options] [--help]说明:显示瞬间行程 (process) 的动态参数:ps的参数非常多, 在此仅列出几个常用的参数并大略介绍含义-A   ...

  5. Neo4j与springdata集成

    1.maven工程需导入的jar包 <!-- neo4j --> <dependency> <groupId>org.springframework.data< ...

  6. 如何使用Pig集成分词器来统计新闻词频?

    散仙在上篇文章中,介绍过如何使用Pig来进行词频统计,整个流程呢,也是非常简单,只有短短5行代码搞定,这是由于Pig的内置函数TOKENIZE这个UDF封装了单词分割的核心流程,当然,我们的需求是各种 ...

  7. Flannel部署

    目录 Flannel CNI集成 配置Docker使用Flannel 1.为Flannel生成证书 [root@linux-node1 ~]# cd /usr/local/src/ssl/ [root ...

  8. HDU - 3007 Buried memory

    传送门 最小圆覆盖模板. //Achen #include<algorithm> #include<iostream> #include<cstring> #inc ...

  9. 史上最直接小白式的Sourcetree的分支创建与合并

    一.Sourcetree简单介绍通过Git可以进行对项目的版本管理,但是如果直接使用Git的软件会比较麻烦,因为是通过一条一条命令进行操作的. Sourcetree则可以与Git结合,提供图形界面,使 ...

  10. 如何访问linux服务器上的mysql8.0

    首先安装好了mysql-connector 1.1. 下载: 官网下载zip包,我下载的是64位的: 下载地址:https://dev.mysql.com/downloads/mysql/ 下载zip ...