显然:f[i]=min{f[j]+(s[i]-s[j]+i-j-1-l)^p}

此题可以基于决策单调优化

证明,反正我现在不打算学

实际上就是双向队列

不停弹出队头的元素,直到当前位置在队头元素最优的范围内。

然后,每次把当前决策插入队尾,并弹出没它优的答案。

 #include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <map>
#include <set>
using namespace std; typedef long double ll;
const int MAXN=1e5+;
struct node{int l,r,p;}q[MAXN];
ll sum[MAXN],f[MAXN];
int T,n,l,p;
char s[]; ll pow(ll x){
int y=p;ll ret=;
while(y){
if(y&)ret=ret*x;
x*=x,y>>=;
}
return ret;
} ll calc(int x,int y){
return f[x]+pow(abs(sum[y]-sum[x]+(y-x-)-l));
} int find(node x,int i){
int l=x.l,r=x.r;
while(l<=r){
int mid=(l+r)>>;
if(calc(i,mid)<=calc(x.p,mid))r=mid-;
else l=mid+;
}
return l;
} void DP_1d1d(){
int head=,tail=;
q[++tail]=(node){,n,};
for(int i=;i<=n;i++){
if(head<=tail && q[head].r<i)head++;
f[i]=calc(q[head].p,i);
if(calc(i,n)<=calc(q[tail].p,n)){
while(head<=tail && calc(q[tail].p,q[tail].l)>=calc(i,q[tail].l) )tail--;
if(head>tail)q[++tail]=(node){i,n,i};
else{
int x=find(q[tail],i);
q[tail].r=x-;
q[++tail]=(node){x,n,i};
}
}
}
} int main(){
scanf("%d",&T);
while(T--){
scanf("%d%d%d",&n,&l,&p);
for(int i=;i<=n;i++)scanf("%s",s),sum[i]=sum[i-]+strlen(s);
DP_1d1d();
if(f[n]>1e18)puts("Too hard to arrange");
else printf("%lld\n",(long long)f[n]);
puts("--------------------");
}
return ;
}

DP_1d1d

DP_1d1d诗人小G的更多相关文章

  1. C++之路进阶——codevs2933(诗人小G)

    2933 诗人小G 2009年NOI全国竞赛  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 大师 Master     题目描述 Description 小G是一个出色的诗人 ...

  2. LG1912 [NOI2009]诗人小G

    题意 题目描述 小G是一个出色的诗人,经常作诗自娱自乐.但是,他一直被一件事情所困扰,那就是诗的排版问题. 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并放在一行中,注意一行中可以 ...

  3. bzoj1563: [NOI2009]诗人小G 决策单调性(1D1D)

    目录 题目链接 题解 代码 题目链接 bzoj1563: [NOI2009]诗人小G 题解 \(n^2\) 的dp长这样 \(f_i = min(f_j + (sum_i - sum_j - 1 - ...

  4. 1563: [NOI2009]诗人小G

    1563: [NOI2009]诗人小G https://lydsy.com/JudgeOnline/problem.php?id=1563 分析: 直接转移f[i]=f[j]+cost(i,j),co ...

  5. 【Luogu1912】【NOI2009】诗人小G(动态规划)

    [Luogu1912][NOI2009]诗人小G(动态规划) 题面 洛谷 题解 原来\(NOI\)这么多神仙题... 考虑一个极其明显的\(dp\) 设\(f[i]\)表示前\(i\)个句子产生的最小 ...

  6. BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】

    题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...

  7. [NOI2009]诗人小G --- DP + 决策单调性

    [NOI2009]诗人小G 题目描述: 小G是一个出色的诗人,经常作诗自娱自乐. 但是,他一直被一件事情所困扰,那就是诗的排版问题. 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并 ...

  8. NOI 2009A 诗人小G

    NOI 2009A 诗人小G 诗人小G [问题描述] 小G是一个出色的诗人,经常作诗自娱自乐.但是,他一直被一件事情所困扰,那就是诗的排版问题. 一首诗包含了若干个句子,对于一些连续的短句,可以将它们 ...

  9. P1912 [NOI2009]诗人小G

    P1912 [NOI2009]诗人小G 思路: 平行四边形不等式优化dp 因为f(j, i) = abs(sum[i]-sum[j]+i-j-1-l)^p 满足平行四边形不等式 j < i f( ...

随机推荐

  1. centos7中python2.7升级到python3.7

    一.下载源码包 # 切换到root目录 [root@localhost ~] cd /root/ # 安装wget [root@localhost ~] yum -y install wget # 使 ...

  2. Java_Day3(下)

    Java learning_Day3(下) 本人学习视频用的是马士兵的,也在这里献上 <链接:https://pan.baidu.com/s/1qKNGJNh0GgvlJnitTJGqgA> ...

  3. UI自动化测试的Page Object模式

    在UI级的自动化测试框架中,当页面样式改变或者页面元素属性改变,那么代码也要随之进行修改,如何做到高效快速的修改代码来适应这些改变呢,这个时候可以引入Page Object模式,也是页面对象设计模式. ...

  4. linux命令解压压缩rar文件的详细步骤

    参考文件:https://www.cnblogs.com/qinglin/p/9007939.html

  5. dataTables插件的使用

    用到dataTables这个插件还是因为Metronic这个框架里有用到,不然我不会选择它的,为啥呢?就感觉它的文档有点复杂(当然,也有我智商不够用的原因):既然用了,那就说说我遇到的问题吧,以防下次 ...

  6. 解决webpack和gulp打包js时ES6转译ES5时Object.assign()方法没转译成功的问题

    在webpack或gulp打包的配置文件中package.json 引入"@babel/plugin-transform-object-assign": "^7.2.0& ...

  7. 浅谈radis

    1.概述 Redis是一个开源的使用ANSI C语言编写.支持网络.可基于内存亦可持久化的日志型.Key-Value数据库,并提供多种语言的API 从2010年3月15日起,Redis的开发工作由VM ...

  8. java锁(转)

    Java中锁分类 锁的分类 公平锁/非公平锁 可重入锁 独享锁/共享锁 互斥锁/读写锁 乐观锁/悲观锁 分段锁 偏向锁/轻量级锁/重量级锁 自旋锁(java.util.concurrent包下的几乎都 ...

  9. python UI自动化之处理多窗口

    前言 有些页面的链接打开后,会重新打开一个窗口,想要在新页面上操作,就需要先切换窗口了.获取窗口的唯一标识用句柄表示,所以只需要切换句柄,我们就能在多个页面上灵活自如的操作了. 1.元素有属性,浏览器 ...

  10. (转)git学习教程

    转自:http://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000