显然:f[i]=min{f[j]+(s[i]-s[j]+i-j-1-l)^p}

此题可以基于决策单调优化

证明,反正我现在不打算学

实际上就是双向队列

不停弹出队头的元素,直到当前位置在队头元素最优的范围内。

然后,每次把当前决策插入队尾,并弹出没它优的答案。

 #include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#include <cmath>
#include <queue>
#include <map>
#include <set>
using namespace std; typedef long double ll;
const int MAXN=1e5+;
struct node{int l,r,p;}q[MAXN];
ll sum[MAXN],f[MAXN];
int T,n,l,p;
char s[]; ll pow(ll x){
int y=p;ll ret=;
while(y){
if(y&)ret=ret*x;
x*=x,y>>=;
}
return ret;
} ll calc(int x,int y){
return f[x]+pow(abs(sum[y]-sum[x]+(y-x-)-l));
} int find(node x,int i){
int l=x.l,r=x.r;
while(l<=r){
int mid=(l+r)>>;
if(calc(i,mid)<=calc(x.p,mid))r=mid-;
else l=mid+;
}
return l;
} void DP_1d1d(){
int head=,tail=;
q[++tail]=(node){,n,};
for(int i=;i<=n;i++){
if(head<=tail && q[head].r<i)head++;
f[i]=calc(q[head].p,i);
if(calc(i,n)<=calc(q[tail].p,n)){
while(head<=tail && calc(q[tail].p,q[tail].l)>=calc(i,q[tail].l) )tail--;
if(head>tail)q[++tail]=(node){i,n,i};
else{
int x=find(q[tail],i);
q[tail].r=x-;
q[++tail]=(node){x,n,i};
}
}
}
} int main(){
scanf("%d",&T);
while(T--){
scanf("%d%d%d",&n,&l,&p);
for(int i=;i<=n;i++)scanf("%s",s),sum[i]=sum[i-]+strlen(s);
DP_1d1d();
if(f[n]>1e18)puts("Too hard to arrange");
else printf("%lld\n",(long long)f[n]);
puts("--------------------");
}
return ;
}

DP_1d1d

DP_1d1d诗人小G的更多相关文章

  1. C++之路进阶——codevs2933(诗人小G)

    2933 诗人小G 2009年NOI全国竞赛  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 大师 Master     题目描述 Description 小G是一个出色的诗人 ...

  2. LG1912 [NOI2009]诗人小G

    题意 题目描述 小G是一个出色的诗人,经常作诗自娱自乐.但是,他一直被一件事情所困扰,那就是诗的排版问题. 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并放在一行中,注意一行中可以 ...

  3. bzoj1563: [NOI2009]诗人小G 决策单调性(1D1D)

    目录 题目链接 题解 代码 题目链接 bzoj1563: [NOI2009]诗人小G 题解 \(n^2\) 的dp长这样 \(f_i = min(f_j + (sum_i - sum_j - 1 - ...

  4. 1563: [NOI2009]诗人小G

    1563: [NOI2009]诗人小G https://lydsy.com/JudgeOnline/problem.php?id=1563 分析: 直接转移f[i]=f[j]+cost(i,j),co ...

  5. 【Luogu1912】【NOI2009】诗人小G(动态规划)

    [Luogu1912][NOI2009]诗人小G(动态规划) 题面 洛谷 题解 原来\(NOI\)这么多神仙题... 考虑一个极其明显的\(dp\) 设\(f[i]\)表示前\(i\)个句子产生的最小 ...

  6. BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】

    题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...

  7. [NOI2009]诗人小G --- DP + 决策单调性

    [NOI2009]诗人小G 题目描述: 小G是一个出色的诗人,经常作诗自娱自乐. 但是,他一直被一件事情所困扰,那就是诗的排版问题. 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并 ...

  8. NOI 2009A 诗人小G

    NOI 2009A 诗人小G 诗人小G [问题描述] 小G是一个出色的诗人,经常作诗自娱自乐.但是,他一直被一件事情所困扰,那就是诗的排版问题. 一首诗包含了若干个句子,对于一些连续的短句,可以将它们 ...

  9. P1912 [NOI2009]诗人小G

    P1912 [NOI2009]诗人小G 思路: 平行四边形不等式优化dp 因为f(j, i) = abs(sum[i]-sum[j]+i-j-1-l)^p 满足平行四边形不等式 j < i f( ...

随机推荐

  1. Meta(其他信息)

    简介 元数据就是描述数据的数据 <meta> 元素表示那些不能由其它HTML元相关元素 (<base>, <link>, <script>, <s ...

  2. How to write a paper in a weekend - by Prof. Pete Carr

    Key points: don't procrastinate; review the notes and renew the literature search; determine who you ...

  3. mybatis-plus - insert

    一. insert 首先看一下 insert.java 的代码: /** * <p> * 根据 ID 删除 * </p> * * @author hubin * @since ...

  4. pymysql模块学习

    #Pymysql 用于连接mysql数据库 #连接数据库 data_ip = "192.168.34.128" data_name = "lch" data_p ...

  5. url 加参数

    url = 访问地址 + ? key1=value1 & key2 = value2 304(未修改)自从上次请求后,请求的网页未修改过.服务器返回此响应时,不会返回网页内容. 加参数,骗过服 ...

  6. testclass面试题

    http://www.testclass.net/interview/selenium/   seleniuim面试题 http://www.testclass.net/interview/inter ...

  7. SD卡报错“error -110 whilst initialising SD card”

    目前开发遇到了某些SD卡和TI的SOC芯片的驱动不协调的地方,具体表现为: uboot 阶段初始化mmc dev 1 没有任何串口信息输出,无法读写mmc Kernel阶段报错”SD卡初始化失败 er ...

  8. CF div2 E. Water Balance

    给你n个数,你可以这样操作:使区间[l,r]的数变成 他们的平均数,求字典序最小的序列. 做法:从左往右逐个比较,比较完之后会形成一个区间,一开始是区间为1的数进行比较,到后来会 变成区间较大的进行比 ...

  9. 一点点学习PS--实战二

    本节实战,可以学到如何制作gif动图,制作搜狗输入法皮肤 1.工具使用 (1)滤镜--液化--膨胀:这里是制作出猫咪打呼时肚子和气泡胀大的效果 (2)图像--画布大小:可裁剪画布到指定像素,并且裁剪指 ...

  10. oracle dataguard配置

    1.archivelog设置:(存档模式) 2.standy controlfile 设置: alter database create standby controlfile as '/data/o ...