【JZOJ6288】旋转子段
description

analysis
可以先用前缀和把原串不调整的方案数先求出来
对于一种翻转,肯定是把\([i..a[i]]\)或\([a[i]..i]\)这段区间翻转
也可以看做是以\({i+a[i]}\over 2\)这个点为翻转中心来翻转区间
于是把所有\(n\)个翻转中心搞出来,用\(vector\)存下翻转长度
对于每个翻转中心点,把翻转长度排一下序,从小到大做
由于当前长度翻转只会影响一个点从不合法点变成合法点,所以每次方案递增
左右端点\([l,r]\),每次\(l\)变小\(r\)变大,方案数递增,然后加上该区间以外的方案来更新答案
可以说是比较巧妙的思路了
code
#pragma GCC optimize("O3")
#pragma G++ optimize("O3")
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<vector>
#define MAXN 100005
#define INF 1000000007
#define ll long long
#define reg register ll
#define fo(i,a,b) for (reg i=a;i<=b;++i)
#define fd(i,a,b) for (reg i=a;i>=b;--i)
using namespace std;
ll a[MAXN],sum[MAXN],pos[MAXN];
vector<ll>v[MAXN<<1];
ll n,ans;
inline ll read()
{
ll x=0,f=1;char ch=getchar();
while (ch<'0' || '9'<ch){if (ch=='-')f=-1;ch=getchar();}
while ('0'<=ch && ch<='9')x=x*10+ch-'0',ch=getchar();
return x*f;
}
inline ll get(ll x,ll y){return sum[y]-sum[x-1];}
int main()
{
freopen("rotate.in","r",stdin);
freopen("rotate.out","w",stdout);
n=read();
fo(i,1,n)pos[a[i]=read()]=i,sum[i]=sum[i-1]+(a[i]==i);
fo(i,1,n)v[i+pos[i]].push_back(abs(i-pos[i])+1);
ans=sum[n];
fo(i,1,n<<1)
{
if (v[i].size()==0)continue;
ll mid=i/2,cnt=0;
sort(v[i].begin(),v[i].end());
fo(j,0,v[i].size()-1)
{
ll len=v[i][j],l,r;
if (i%2==0)l=mid-len/2,r=mid+len/2;
else l=mid-len/2+1,r=mid+len/2;
++cnt;
ans=max(ans,get(1,l-1)+cnt+get(r+1,n));
}
}
printf("%lld\n",ans);
return 0;
}
【JZOJ6288】旋转子段的更多相关文章
- 8.7 NOIP模拟测试14 旋转子段+走格子+ 柱状图
T1 旋转子段 30% 暴力枚举起点和长度,暴力判断,o(n3) 不知道为什么我拿了40分... 60% 每一个点都有一个固定的旋转中心可以转成固定点,枚举旋转点和长度. 100% 用一个vecto ...
- [CSP-S模拟测试]:旋转子段(数学)
题目描述 $ZYL$有$N$张牌编号分别为$1,2,...,N$.他把这$N$张牌打乱排成一排,然后他要做一次旋转使得旋转后固定点尽可能多.如果第$i$个位置的牌的编号为$i$,我们就称之为固定点.旋 ...
- NOIP模拟测试14「旋转子段·走格子·柱状图」
旋转子段 连60分都没想,考试一直肝t3,t2,没想到t1最简单 我一直以为t1很难,看了题解发现也就那样 题解 性质1 一个包含a[i]旋转区间值域范围最多为min(a[i],i)----max(a ...
- HZOJ 旋转子段
作者的正解: 算法一:对于30%的数据: 直接枚举区间直接模拟,时间复杂度O(N3). 算法二:对于60%的数据:枚举旋转中心点,然后再枚举旋转的端点, 我们可以用O(n)的预处理求前缀和记录固定点, ...
- 旋转子段 (思维stl)
题目: 大概意思就是给你一个序列,你可以选择一段区间使它左右翻折一遍,然后呢,从1到n找一遍,看a[i]==i的数最多是多少. 其实刚才我已经把暴力思路说出来了,枚举每一个区间长度,枚举每一个左端点, ...
- CSYZDay2模拟题解
T1.rotate [问题描述] ZYL有N张牌编号分别为1, 2,……,N.他把这N张牌打乱排成一排,然后他要做一次旋转使得旋转后固定点尽可能多.如果第i个位置的牌的编号为i,我们就称之为固定点.旋 ...
- NOIP模拟 14
垃圾成绩,一点都不稳定. 如果把数组开小的分得到的话..总分还挺不错.. 那又能怪谁,都快NOIP了还犯这种傻逼错误 nc哥是要阿卡的节奏..真是太强了 某kyh也不知道偷了谁的rp,分高的一批 wd ...
- 2019.10.22 校内CSP%你赛
我太难了 先说好没有代码T1 题目大意: 给定一些形如|ax+b|的式子,求最小的x使得它们的和最小. 算法一: 大家知道零点分段法 对于这n个式子我们有n+1个取值范围 使得展开这n个式子得到的新式 ...
- [NOIP模拟14]题解
当垃圾已经成为一种常态233333 A.旋转子段 考场上的$n^2$手残少了20分,555 (主要是因为实在打不出来$n^3$的做法所以写不了对拍?ccc为什么考场上没有想起有reverse()这么 ...
随机推荐
- 监控数据库SqlServer
监控数据库的连接数select COUNT( * ) from master.dbo.sysprocesses select COUNT( * ) from master.dbo.sysprocess ...
- 如果通过cookies和localStorage取值?
1. getCook : 设定setCookie值 let setCookie = setCookie('wan',data,7); function setCookie(c_name,value,e ...
- VS系列远程调试
其实很多时候,远程调试的话,我还是更喜欢用WinDBG的, 首先,可以练习WinDBG的使用手段, 其次,可以增加WinDBG的熟练度, 最重要的,WinDBG在内核调试部分很常用,我也很喜欢它,所以 ...
- python的一个简单日志记录库glog的使用
一. glog的简介 glog所记录的日志信息总是记录到标准的stderr中,即控制台终端. 每一行日志记录总是会添加一个谷歌风格的前缀,即google-style log prefix, 它的形式如 ...
- nodejs 模板引擎ejs的简单使用(3)
1.ejs <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <tit ...
- 沉默的QQ
QQ很久没有叮咚了,一是没人发消息给我,二是我关了QQ的声音.现在除了几个还在接收消息的群外,其他的群都屏蔽了,有事才上去看看.我从来就没写过QQ空间,那些以前经常写空间的朋友也多数停止了喧闹.每次登 ...
- 凑出和相等的k组数,玄学结论——hdu6616
[1,n]n个数分成k组,每组n/k个,问k组数和相等的解决方案 首先(1+n)*n/2判定一下是否可以被k整除 n/k为偶数时显然成立 n/k为奇数时每组数前三个很难配,我想了一种玄学的结论,也证明 ...
- mysql在win系统dos 安装版配置步骤详解
1.准备工作 下载mysql的最新免安装版本mysql-noinstall-5.1.53-win32.zip,解压缩到相关目录,如:d:\ mysql-noinstall-5.1.53-win32.这 ...
- 牛客多校第七场 C Governing sand 线段树
题意: 有一个树林,树林中不同种类的树有不同的数量,高度,砍伐它们的价格.现在要求砍掉一些树,使得高度最高的树占剩下的树的总数的一半以上,求最小花费. 题解: 用线段树维护不同种类树的信息,叶子节点从 ...
- mac 安装配置使用 mongoldb
mac 安装配置使用 mongoldb 安装和配置 brew install mongos brew install mongo # 密码就是用户的密码 # 配置数据文件 //如果不配置会出现错误62 ...