fwt优化+树形DP HDU 5909
//fwt优化+树形DP HDU 5909
//见官方题解
// BestCoder Round #88 http://bestcoder.hdu.edu.cn/ #include <bits/stdc++.h>
// #include <iostream>
// #include <cstdio>
// #include <cstdlib>
// #include <algorithm>
// #include <vector>
// #include <queue>
// #include <math.h>
using namespace std;
#define LL long long
typedef pair<int,int> pii;
const int inf = 0x3f3f3f3f;
const int MOD =1e9+;
const int N =1e3+;
#define clc(a,b) memset(a,b,sizeof(a))
const double eps = 1e-;
void fre() {freopen("in.txt","r",stdin);}
void freout() {freopen("out.txt","w",stdout);}
inline int read() {int x=,f=;char ch=getchar();while(ch>''||ch<'') {if(ch=='-') f=-; ch=getchar();}while(ch>=''&&ch<='') {x=x*+ch-'';ch=getchar();}return x*f;}
const int rev = (MOD+)>>;
int a[N],tem[N];
int n,m;
vector<int> g[N];
int dp[N][N];
int ans[N];
void FWT(int *a,int n) {
for(int d=; d<n; d<<=)
for(int m=d<<,i=; i<n; i+=m)
for(int j=; j<d; j++) {
int x=a[i+j],y=a[i+j+d];
a[i+j]=(x+y)%MOD,a[i+j+d]=(x-y+MOD)%MOD;
}
} void UFWT(int *a,int n) {
for(int d=; d<n; d<<=)
for(int m=d<<,i=; i<n; i+=m)
for(int j=; j<d; j++) {
int x=a[i+j],y=a[i+j+d];
a[i+j]=1LL*(x+y)*rev%MOD,a[i+j+d]=(1LL*(x-y)*rev%MOD+MOD)%MOD;
}
} void solve(int *a,int *b,int n) {
FWT(a,n);
FWT(b,n);
for(int i=; i<n; i++) a[i]=1LL*a[i]*b[i]%MOD;
UFWT(a,n);
} void dfs(int u,int f){
dp[u][a[u]]=;
for(int i=;i<(int)g[u].size();i++){
int v=g[u][i];
if(v==f) continue;
dfs(v,u);
for(int j=;j<m;j++) tem[j]=dp[u][j];
solve(dp[u],dp[v],m);
for(int j=;j<m;j++) dp[u][j]=(dp[u][j]+tem[j])%MOD;
}
for(int i=;i<m;i++) ans[i]=(ans[i]+dp[u][i])%MOD;
}
int main(){
// fre();
int T;
scanf("%d",&T);
while(T--){
clc(dp,);
clc(ans,);
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) {
scanf("%d",&a[i]);
g[i].clear();
}
for(int i=;i<=n-;i++){
int u,v;
scanf("%d%d",&u,&v);
g[u].push_back(v);
g[v].push_back(u);
}
dfs(,);
for(int i=;i<m;i++){
printf("%d%c",ans[i],i==m- ? '\n':' ');
}
}
return ;
}
fwt优化+树形DP HDU 5909的更多相关文章
- 长链剖分优化树形DP总结
长链剖分 规定若\(x\)为叶结点,则\(len[x]=1\). 否则定义\(preferredchild[x]\)(以下简称\(pc[x]\),称\(pc[x]\)为\(x\)的长儿子)为\(x\) ...
- [NOI2014]购票 --- 斜率优化 + 树形DP + 数据结构
[NOI2014]购票 题目描述 今年夏天,NOI在SZ市迎来了她30周岁的生日. 来自全国 n 个城市的OIer们都会从各地出发,到SZ市参加这次盛会. 全国的城市构成了一棵以SZ市为根的有根树,每 ...
- HDU - 1054 Strategic Game(二分图最小点覆盖/树形dp)
d.一颗树,选最少的点覆盖所有边 s. 1.可以转成二分图的最小点覆盖来做.不过转换后要把匹配数除以2,这个待细看. 2.也可以用树形dp c.匈牙利算法(邻接表,用vector实现): /* 用ST ...
- 算法笔记--树的直径 && 树形dp && 虚树 && 树分治 && 树上差分 && 树链剖分
树的直径: 利用了树的直径的一个性质:距某个点最远的叶子节点一定是树的某一条直径的端点. 先从任意一顶点a出发,bfs找到离它最远的一个叶子顶点b,然后再从b出发bfs找到离b最远的顶点c,那么b和c ...
- hdu 5909 Tree Cutting [树形DP fwt]
hdu 5909 Tree Cutting 题意:一颗无根树,每个点有权值,连通子树的权值为异或和,求异或和为[0,m)的方案数 \(f[i][j]\)表示子树i中经过i的连通子树异或和为j的方案数 ...
- HDU.5909.Tree Cutting(树形DP FWT/点分治)
题目链接 \(Description\) 给定一棵树,每个点有权值,在\([0,m-1]\)之间.求异或和为\(0,1,...,m-1\)的非空连通块各有多少个. \(n\leq 1000,m\leq ...
- 【HDU 5909】 Tree Cutting (树形依赖型DP+点分治)
Tree Cutting Problem Description Byteasar has a tree T with n vertices conveniently labeled with 1,2 ...
- hdu 5909 Tree Cutting——点分治(树形DP转为序列DP)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=5909 点分治的话,每次要做一次树形DP:但时间应该是 siz*m2 的.可以用 FWT 变成 siz*ml ...
- HDU 5977 Garden of Eden (树形dp+快速沃尔什变换FWT)
CGZ大佬提醒我,我要是再不更博客可就连一月一更的频率也没有了... emmm,正好做了一道有点意思的题,就拿出来充数吧=.= 题意 一棵树,有 $ n (n\leq50000) $ 个节点,每个点都 ...
随机推荐
- 天才ACM
天才ACM 给定一个整数m,定义一个集合的权值为从这个集合中任意选出m对数(不够没关系,选到尽可能选,凑不成对的舍去),每对数两个数的差的平方的和的最大值. 现在给出一个数列\(\{a_i\}\),询 ...
- AtCoder Beginner Contest 132 E - Hopscotch Addict
bfs 位置+状态 just need to calculate min value(only it is useful), so O(1*x) 挺有趣的一道题... #include <cst ...
- JS请求服务器,并返回信息,请求过程中不需要跳转页面
js请求服务器,并返回信息,请求过程中不需要跳转页面 这个可以通过jQuery框架轻松实现,jQuery中包含多种ajax的请求方式,详细可以参考下对应 的API. 你上面定义的按钮类型是submit ...
- flask中abort()函数的使用
一.介绍 #从flask中导入abort from flask import abort abort()函数的作用 可以让开发者在检测到web访问错误时,立即将错误信息返回回去,返回的错误码必须是已知 ...
- pycharm同时使用python2.7和python3.5设置方法
pycharm同时使用python2.7和python3.5设置方法 - CSDN博客https://blog.csdn.net/qwerty200696/article/details/530159 ...
- Storm 测试
本文将学习如何使用java创建Storm拓扑 Storm集群的组件 Storm集群类似于Hadoop集群,只不过 Hadoop 上运行"MapReduce jobs", Storm ...
- 运算符的基本概念以及常用Scanner、随机数Random、选择结构的初步了解
运算符 分类 算术运算符 位运算符 关系运算符|比较运算符 逻辑运算符 条件运算符 赋值运算符 其中优先级顺序从上到下,可以记忆口诀:单目乘除位关系,逻辑三目后赋值 操作数: 运算符左右两边的数 表达 ...
- 02_mybatis开发dao的方法
MyBatis开发dao的方法 1. SqlSession使用范围 1.1 SqlSessionFactoryBuilder 通过SqlSessionFactoryBuilder创建会话工厂Sql ...
- vue使用axios实现前后端通信
安装依赖 npm install --save axios # vue-axios是对axios的简单封装 npm install --save vue-axios 用例 在main.js里面进行全局 ...
- Java核心-01 谈谈你对Java平台的理解
今天我要问你的问题是,谈谈你对 Java 平台的理解?“Java 是解释执行”,这句话正确吗? 典型回答 Java本身是一种面向对象的语言,最显著的特性有两个.一是所谓的“书写一次,到处运行”,能够非 ...