B. Minimize the Permutation

You are given a permutation of length nn. Recall that the permutation is an array consisting of nn distinct integers from 11 to nn in arbitrary order. For example, [2,3,1,5,4][2,3,1,5,4] is a permutation, but [1,2,2][1,2,2] is not a permutation (22 appears twice in the array) and [1,3,4][1,3,4] is also not a permutation (n=3n=3 but there is 44 in the array).

You can perform at most n−1n−1 operations with the given permutation (it is possible that you don't perform any operations at all). The ii-th operation allows you to swap elements of the given permutation on positions ii and i+1i+1. Each operation can be performed at most once. The operations can be performed in arbitrary order.

Your task is to find the lexicographically minimum possible permutation obtained by performing some of the given operations in some order.

You can see the definition of the lexicographical order in the notes section.

You have to answer qq independent test cases.

For example, let's consider the permutation [5,4,1,3,2][5,4,1,3,2]. The minimum possible permutation we can obtain is [1,5,2,4,3][1,5,2,4,3] and we can do it in the following way:

  1. perform the second operation (swap the second and the third elements) and obtain the permutation [5,1,4,3,2][5,1,4,3,2];
  2. perform the fourth operation (swap the fourth and the fifth elements) and obtain the permutation [5,1,4,2,3][5,1,4,2,3];
  3. perform the third operation (swap the third and the fourth elements) and obtain the permutation [5,1,2,4,3][5,1,2,4,3].
  4. perform the first operation (swap the first and the second elements) and obtain the permutation [1,5,2,4,3][1,5,2,4,3];

Another example is [1,2,4,3][1,2,4,3]. The minimum possible permutation we can obtain is [1,2,3,4][1,2,3,4] by performing the third operation (swap the third and the fourth elements).

Input

The first line of the input contains one integer qq (1≤q≤1001≤q≤100) — the number of test cases. Then qq test cases follow.

The first line of the test case contains one integer nn (1≤n≤1001≤n≤100) — the number of elements in the permutation.

The second line of the test case contains nn distinct integers from 11 to nn — the given permutation.

Output

For each test case, print the answer on it — the lexicograhically minimum possible permutation obtained by performing some of the given operations in some order.

Example
input

Copy
4
5
5 4 1 3 2
4
1 2 4 3
1
1
4
4 3 2 1
output

Copy
1 5 2 4 3
1 2 3 4
1
1 4 3 2
Note

Recall that the permutation pp of length nn is lexicographically less than the permutation qq of length nn if there is such index i≤ni≤n that for all jj from 11 to i−1i−1 the condition pj=qjpj=qj is satisfied, and pi<qipi<qi. For example:

  • p=[1,3,5,2,4]p=[1,3,5,2,4] is less than q=[1,3,5,4,2]q=[1,3,5,4,2] (such i=4i=4 exists, that pi<qipi<qi and for each j<ij<i holds pj=qjpj=qj),
  • p=[1,2]p=[1,2] is less than q=[2,1]q=[2,1] (such i=1i=1 exists, that pi<qipi<qi and for each j<ij<i holds pj=qjpj=qj).

选择最小的往前走。

#include<bits/stdc++.h>
using namespace std;
vector<int>p;
int pos[];
int vis[];
void solve() {
p.clear();
int n;
scanf("%d",&n);
memset(vis,,sizeof(vis));
memset(pos,,sizeof(pos));
for(int i=; i<n; i++) {
int x;
scanf("%d",&x);
p.push_back(x);//存数字
pos[x]=i;//记录每个数字的下标
}
for(int i=; i<=n; i++) {//移动最小的数字
int flag = ;
while(flag==) {
if(pos[i]>&&vis[pos[i]-]==) {//如果pos[1]=0,说明已经在一号位,就不用移动,
//如果没在一号位,他的前一位没有和他进行过交换
vis[pos[i]-]=;//那么就标记,交换过
int now=pos[i],pnow=pos[i]-;
swap(p[now],p[pnow]);//交换数字
swap(pos[p[now]],pos[p[pnow]]);//交换下标
} else {
flag=;
}
}
vis[pos[i]]=;//当目前最小的数字已经不能再交换了,那么他的位置也就不能再动,就标记
}
for(int i=; i<p.size(); i++) { //最后输出
cout<<p[i]<<" ";
}
cout<<endl; }
int main() {
int t;
scanf("%d",&t);
while(t--)solve();
}
//从后往前扫,遇到能往左边挪的就往左边挪。
//当然还有位置没有挪过,那就把没有被挪过的地方记录下来,然后再贪心把小的往左边挪。
#include<bits/stdc++.h>
using namespace std;
const int maxn = + ;
int a[maxn];
int vis[maxn];
int n;
int main() {
int T;
cin >> T;
while(T--) {
cin >> n;
for(int i = ; i <= n; i++) {
cin >> a[i];
vis[i] = ;
}
for(int i = n - ; i >= ; i--) {
if(a[i] > a[i+]) {
swap(a[i], a[i+]);
vis[i] = ;
}
}
for(int i = ; i <= n - ; i++) {
if(vis[i] == ) {
if(a[i] > a[i+])
swap(a[i], a[i+]);
}
}
for(int i = ; i <= n; i++)
printf("%d ", a[i]);
puts("");
}
return ;
}

Codeforces Round #598 (Div. 3) B Minimize the Permutation的更多相关文章

  1. Codeforces Round #598 (Div. 3) B. Minimize the Permutation 贪心

    B. Minimize the Permutation You are given a permutation of length n. Recall that the permutation is ...

  2. Codeforces Round #598 (Div. 3)- E. Yet Another Division Into Teams - 动态规划

    Codeforces Round #598 (Div. 3)- E. Yet Another Division Into Teams - 动态规划 [Problem Description] 给你\( ...

  3. 【CF1256】Codeforces Round #598 (Div. 3) 【思维+贪心+DP】

    https://codeforces.com/contest/1256 A:Payment Without Change[思维] 题意:给你a个价值n的物品和b个价值1的物品,问是否存在取物方案使得价 ...

  4. Codeforces Round #598 (Div. 3)

    传送门 A. Payment Without Change 签到. Code /* * Author: heyuhhh * Created Time: 2019/11/4 21:19:19 */ #i ...

  5. Codeforces Round #598 (Div. 3) A,B,C,D{E,F待补}

    A. Payment Without Change   #include<bits/stdc++.h> using namespace std; #define int long long ...

  6. Codeforces Round #598 (Div. 3) E. Yet Another Division Into Teams dp

    E. Yet Another Division Into Teams There are n students at your university. The programming skill of ...

  7. Codeforces Round #598 (Div. 3)E(dp路径转移)

    题:https://codeforces.com/contest/1256/problem/E 题意:给一些值,代表队员的能力值,每组要分3个或3个以上的人,然后有个评价值x=(队里最大值-最小值), ...

  8. Codeforces Round #598 (Div. 3) F. Equalizing Two Strings 构造

    F. Equalizing Two Strings You are given two strings s and t both of length n and both consisting of ...

  9. Codeforces Round #598 (Div. 3) D. Binary String Minimizing 贪心

    D. Binary String Minimizing You are given a binary string of length n (i. e. a string consisting of ...

随机推荐

  1. SEO中10个常用的查询指令

    用好搜索引擎一些特别指令,是干SEO这行的一个根本功.初步收拾了10个功能,独自使用是最基础的才能,假如综合应用,你会发现搜索的奇妙无限. 1. site: 某个特定网站收录情况 site:www.c ...

  2. PP: Meta-learning framework with applications to zero-shot time-series forecasting

    From: Yoshua Bengio Problem: time series forecasting. Supplementary knowledge: 1. what is meta-learn ...

  3. BZOJ2809&&LG1552 APIO2012派遣(线段树合并)

    BZOJ2809&&LG1552 APIO2012派遣(线段树合并) 题面 自己找去 HINT 简化一题面就是让你从每个点的子树中以\(<=m\)的代价选取尽可能多的点,然后乘上 ...

  4. css3制作网页动画

    一.CSS3变形 CSS3变形是一些效果的集合 如平移.旋转.缩放.倾斜效果 每个效果都可以称为变形(transform),它们可以分别操控元素发生平移.旋转.缩放.倾斜等变化 二.CSS3位移:tr ...

  5. python 3 可迭代对象与迭代器

    1,可迭代对象 内部含有__iter__方法的对象是可迭代对象 遵循可迭代协议 dir() 检查对象含有什么方法 dir()会返回一个列表,这个列表中含有该对象的以字符串的形式所有方法名.这样我们就可 ...

  6. jQuery---京东轮播图

    京东轮播图 有个计数的,点右边,计数增加,判断计数是否超过总的长度,超过设置计数为0,再设置当前的图片动画,兄弟的图片动画 左边点击同理,计数是--,判断计数是否等于-1,等于则reset计数为总长度 ...

  7. mybatis第一天02

    mybatis第二天02 1.映射文件之输入输出映射 1.1映射文件之输入映射类型(parameterType) 1.1.1简单类型 当parameterType为简单类型时,我们只需要直接填写“in ...

  8. 实用沙盒工具 —— VMware Workstation15安装教程

    一:简介 VMware Workstation(中文名"威睿工作站")是一款功能强大的桌面虚拟计算机软件,提供用户可在单一的桌面上同时运行不同的操作系统,和进行开发.测试 .部署新 ...

  9. PP: Tripoles: A new class of relationships in time series data

    Problem: ?? mining relationships in time series data; A new class of relationships in time series da ...

  10. angular2 给下拉框动态赋值

    html页中 其中aab是从后台获取的动态数据