B. Minimize the Permutation

You are given a permutation of length nn. Recall that the permutation is an array consisting of nn distinct integers from 11 to nn in arbitrary order. For example, [2,3,1,5,4][2,3,1,5,4] is a permutation, but [1,2,2][1,2,2] is not a permutation (22 appears twice in the array) and [1,3,4][1,3,4] is also not a permutation (n=3n=3 but there is 44 in the array).

You can perform at most n−1n−1 operations with the given permutation (it is possible that you don't perform any operations at all). The ii-th operation allows you to swap elements of the given permutation on positions ii and i+1i+1. Each operation can be performed at most once. The operations can be performed in arbitrary order.

Your task is to find the lexicographically minimum possible permutation obtained by performing some of the given operations in some order.

You can see the definition of the lexicographical order in the notes section.

You have to answer qq independent test cases.

For example, let's consider the permutation [5,4,1,3,2][5,4,1,3,2]. The minimum possible permutation we can obtain is [1,5,2,4,3][1,5,2,4,3] and we can do it in the following way:

  1. perform the second operation (swap the second and the third elements) and obtain the permutation [5,1,4,3,2][5,1,4,3,2];
  2. perform the fourth operation (swap the fourth and the fifth elements) and obtain the permutation [5,1,4,2,3][5,1,4,2,3];
  3. perform the third operation (swap the third and the fourth elements) and obtain the permutation [5,1,2,4,3][5,1,2,4,3].
  4. perform the first operation (swap the first and the second elements) and obtain the permutation [1,5,2,4,3][1,5,2,4,3];

Another example is [1,2,4,3][1,2,4,3]. The minimum possible permutation we can obtain is [1,2,3,4][1,2,3,4] by performing the third operation (swap the third and the fourth elements).

Input

The first line of the input contains one integer qq (1≤q≤1001≤q≤100) — the number of test cases. Then qq test cases follow.

The first line of the test case contains one integer nn (1≤n≤1001≤n≤100) — the number of elements in the permutation.

The second line of the test case contains nn distinct integers from 11 to nn — the given permutation.

Output

For each test case, print the answer on it — the lexicograhically minimum possible permutation obtained by performing some of the given operations in some order.

Example
input

Copy
4
5
5 4 1 3 2
4
1 2 4 3
1
1
4
4 3 2 1
output

Copy
1 5 2 4 3
1 2 3 4
1
1 4 3 2
Note

Recall that the permutation pp of length nn is lexicographically less than the permutation qq of length nn if there is such index i≤ni≤n that for all jj from 11 to i−1i−1 the condition pj=qjpj=qj is satisfied, and pi<qipi<qi. For example:

  • p=[1,3,5,2,4]p=[1,3,5,2,4] is less than q=[1,3,5,4,2]q=[1,3,5,4,2] (such i=4i=4 exists, that pi<qipi<qi and for each j<ij<i holds pj=qjpj=qj),
  • p=[1,2]p=[1,2] is less than q=[2,1]q=[2,1] (such i=1i=1 exists, that pi<qipi<qi and for each j<ij<i holds pj=qjpj=qj).

选择最小的往前走。

#include<bits/stdc++.h>
using namespace std;
vector<int>p;
int pos[];
int vis[];
void solve() {
p.clear();
int n;
scanf("%d",&n);
memset(vis,,sizeof(vis));
memset(pos,,sizeof(pos));
for(int i=; i<n; i++) {
int x;
scanf("%d",&x);
p.push_back(x);//存数字
pos[x]=i;//记录每个数字的下标
}
for(int i=; i<=n; i++) {//移动最小的数字
int flag = ;
while(flag==) {
if(pos[i]>&&vis[pos[i]-]==) {//如果pos[1]=0,说明已经在一号位,就不用移动,
//如果没在一号位,他的前一位没有和他进行过交换
vis[pos[i]-]=;//那么就标记,交换过
int now=pos[i],pnow=pos[i]-;
swap(p[now],p[pnow]);//交换数字
swap(pos[p[now]],pos[p[pnow]]);//交换下标
} else {
flag=;
}
}
vis[pos[i]]=;//当目前最小的数字已经不能再交换了,那么他的位置也就不能再动,就标记
}
for(int i=; i<p.size(); i++) { //最后输出
cout<<p[i]<<" ";
}
cout<<endl; }
int main() {
int t;
scanf("%d",&t);
while(t--)solve();
}
//从后往前扫,遇到能往左边挪的就往左边挪。
//当然还有位置没有挪过,那就把没有被挪过的地方记录下来,然后再贪心把小的往左边挪。
#include<bits/stdc++.h>
using namespace std;
const int maxn = + ;
int a[maxn];
int vis[maxn];
int n;
int main() {
int T;
cin >> T;
while(T--) {
cin >> n;
for(int i = ; i <= n; i++) {
cin >> a[i];
vis[i] = ;
}
for(int i = n - ; i >= ; i--) {
if(a[i] > a[i+]) {
swap(a[i], a[i+]);
vis[i] = ;
}
}
for(int i = ; i <= n - ; i++) {
if(vis[i] == ) {
if(a[i] > a[i+])
swap(a[i], a[i+]);
}
}
for(int i = ; i <= n; i++)
printf("%d ", a[i]);
puts("");
}
return ;
}

Codeforces Round #598 (Div. 3) B Minimize the Permutation的更多相关文章

  1. Codeforces Round #598 (Div. 3) B. Minimize the Permutation 贪心

    B. Minimize the Permutation You are given a permutation of length n. Recall that the permutation is ...

  2. Codeforces Round #598 (Div. 3)- E. Yet Another Division Into Teams - 动态规划

    Codeforces Round #598 (Div. 3)- E. Yet Another Division Into Teams - 动态规划 [Problem Description] 给你\( ...

  3. 【CF1256】Codeforces Round #598 (Div. 3) 【思维+贪心+DP】

    https://codeforces.com/contest/1256 A:Payment Without Change[思维] 题意:给你a个价值n的物品和b个价值1的物品,问是否存在取物方案使得价 ...

  4. Codeforces Round #598 (Div. 3)

    传送门 A. Payment Without Change 签到. Code /* * Author: heyuhhh * Created Time: 2019/11/4 21:19:19 */ #i ...

  5. Codeforces Round #598 (Div. 3) A,B,C,D{E,F待补}

    A. Payment Without Change   #include<bits/stdc++.h> using namespace std; #define int long long ...

  6. Codeforces Round #598 (Div. 3) E. Yet Another Division Into Teams dp

    E. Yet Another Division Into Teams There are n students at your university. The programming skill of ...

  7. Codeforces Round #598 (Div. 3)E(dp路径转移)

    题:https://codeforces.com/contest/1256/problem/E 题意:给一些值,代表队员的能力值,每组要分3个或3个以上的人,然后有个评价值x=(队里最大值-最小值), ...

  8. Codeforces Round #598 (Div. 3) F. Equalizing Two Strings 构造

    F. Equalizing Two Strings You are given two strings s and t both of length n and both consisting of ...

  9. Codeforces Round #598 (Div. 3) D. Binary String Minimizing 贪心

    D. Binary String Minimizing You are given a binary string of length n (i. e. a string consisting of ...

随机推荐

  1. ubuntu set up 7 - power

    https://askubuntu.com/questions/1078939/ubuntu-18-04-battery-life http://tipsonubuntu.com/2018/11/18 ...

  2. c#在类里不能使用Response解决方法

    response对应的类是HttpResponse,  在System.Web 命名字间里,   如果你在类中要使用   Response 的话,   需要使用System.Web.HttpConte ...

  3. 目标检测,主要问题发展,非极大值抑制中阈值也作为参数去学习更满足end2end,最近发展趋势和主要研究思路方向

    目标检测,主要问题发展,非极大值抑制中阈值也作为参数去学习更满足end2end,最近发展趋势和主要研究思路方向 待办 目标检测问题时间线 特征金字塔加滑窗 对象框推荐 回归算法回归对象框 多尺度检测 ...

  4. Alice and Hairdresser

    Alice's hair is growing by leaps and bounds. Maybe the cause of it is the excess of vitamins, or may ...

  5. 解决VMware中Ubuntu18.04全屏问题

    在VMware中Ubuntu18.04全屏问题   在虚拟机机中安装完Ubuntu18.04之后界面显示的特别小,默认的好像是800*600分辨率,看着不舒服.先是在设置->设备->显示 ...

  6. WSO2 ESB XML定义语法(1)

    1.(基于Apache Synapse的WSO2 ESB实现)参考文件位置: http://synapse.apache.org/userguide/config.html 基于Apache Syna ...

  7. phpstorm 安装插件

    进入 File -> Settings -> Plugins  ,搜索你想要安装的插件

  8. a标签绑定事件

    <a href="javascript:void(0);" onclick="js_method()"></a> 这种方法是很多网站最常 ...

  9. 解决jquery.pjax加载后的异常滚动

    个人博客 地址:http://www.wenhaofan.com/article/20181106154356 在使用jquery.pjax的时候发现每次加载完成后都会将滚动条滚动至顶部,用户体验极不 ...

  10. SAM的应用及例题

    专门开一个帖子记录一下自己在学习SAM时做的题,并总结一下做法 1.LCS https://www.cnblogs.com/wenci/p/10432932.html 这道题是要求对两个字符串查找最长 ...