判断一点是否在不规则图像的内部算法,如下图是由一个个点组成的不规则图像,判断某一点是否在不规则矩形内部,先上效果图

算法实现如下,算法简单,亲试有效

public class PositionAlgorithmHelper
{
/// <summary>
/// 判断当前位置是否在不规则形状里面
/// </summary>
/// <param name="nvert">不规则形状的定点数</param>
/// <param name="vertx">当前x坐标</param>
/// <param name="verty">当前y坐标</param>
/// <param name="testx">不规则形状x坐标集合</param>
/// <param name="testy">不规则形状y坐标集合</param>
/// <returns></returns>
public static bool PositionPnpoly(int nvert, List<double> vertx, List<double> verty, double testx, double testy)
{
int i, j, c = 0;
for (i = 0, j = nvert - 1; i < nvert; j = i++)
{
if (((verty[i] > testy) != (verty[j] > testy)) && (testx < (vertx[j] - vertx[i]) * (testy - verty[i]) / (verty[j] - verty[i]) + vertx[i]))
{
c = 1 + c; ;
}
}
if (c % 2 == 0)
{
return false;
}
else
{
return true;
}
}
}

  用上图坐标进行测试:

class Program
{
static void Main(string[] args)
{
test1();
} /// <summary>
/// test1
/// </summary>
public static void test1()
{
//不规则图像坐标
List<Position> position = new List<Position>();
position.Add(new Position() { x = 6, y = 0 });
position.Add(new Position() { x = 10, y = 2 });
position.Add(new Position() { x = 16, y = 2 });
position.Add(new Position() { x = 20, y = 6 });
position.Add(new Position() { x = 14, y = 10 });
position.Add(new Position() { x = 16, y = 6 });
position.Add(new Position() { x = 12, y = 6 });
position.Add(new Position() { x = 14, y = 8 });
position.Add(new Position() { x = 10, y = 8 });
position.Add(new Position() { x = 8, y = 6 });
position.Add(new Position() { x = 12, y = 4 });
position.Add(new Position() { x = 6, y = 4 });
position.Add(new Position() { x = 8, y = 2 }); //用户当前位置坐标
List<Position> userPositions = new List<Position>();
userPositions.Add(new Position() { x = 14, y = 4 });
userPositions.Add(new Position() { x = 15, y = 4 });
userPositions.Add(new Position() { x = 10, y = 6 });
userPositions.Add(new Position() { x = 8, y = 5 }); //不规则图像x坐标集合
List<double> xList = position.Select(x => x.x).ToList();
//不规则图像y坐标集合
List<double> yList = position.Select(x => x.y).ToList(); foreach (var userPosition in userPositions)
{
bool result = PositionAlgorithmHelper.PositionPnpoly(position.Count, xList, yList, userPosition.x, userPosition.y); if (result)
{
Console.WriteLine(string.Format("{0},{1}【在】坐标内", userPosition.x, userPosition.y));
}
else
{
Console.WriteLine(string.Format("{0},{1}【不在】坐标内", userPosition.x, userPosition.y));
}
}
}
}

  另外两种方式:

/// <summary>
/// 判断点是否在多边形内.
/// ----------原理----------
/// 注意到如果从P作水平向左的射线的话,如果P在多边形内部,那么这条射线与多边形的交点必为奇数,
/// 如果P在多边形外部,则交点个数必为偶数(0也在内)。
/// 所以,我们可以顺序考虑多边形的每条边,求出交点的总个数。还有一些特殊情况要考虑。假如考虑边(P1,P2),
/// 1)如果射线正好穿过P1或者P2,那么这个交点会被算作2次,处理办法是如果P的从坐标与P1,P2中较小的纵坐标相同,则直接忽略这种情况
/// 2)如果射线水平,则射线要么与其无交点,要么有无数个,这种情况也直接忽略。
/// 3)如果射线竖直,而P0的横坐标小于P1,P2的横坐标,则必然相交。
/// 4)再判断相交之前,先判断P是否在边(P1,P2)的上面,如果在,则直接得出结论:P再多边形内部。
/// </summary>
/// <param name="checkPoint">要判断的点</param>
/// <param name="polygonPoints">多边形的顶点</param>
/// <returns></returns>
public static bool IsInPolygon2(Position checkPoint, List<Position> polygonPoints)
{
int counter = 0;
int i;
double xinters;
Position p1, p2;
int pointCount = polygonPoints.Count;
p1 = polygonPoints[0];
for (i = 1; i <= pointCount; i++)
{
p2 = polygonPoints[i % pointCount];
if (checkPoint.y > Math.Min(p1.y, p2.y)//校验点的Y大于线段端点的最小Y
&& checkPoint.y <= Math.Max(p1.y, p2.y))//校验点的Y小于线段端点的最大Y
{
if (checkPoint.x <= Math.Max(p1.x, p2.x))//校验点的X小于等线段端点的最大X(使用校验点的左射线判断).
{
if (p1.y != p2.y)//线段不平行于X轴
{
xinters = (checkPoint.y - p1.y) * (p2.x - p1.x) / (p2.y - p1.y) + p1.x;
if (p1.x == p2.x || checkPoint.x <= xinters)
{
counter++;
}
}
} }
p1 = p2;
} if (counter % 2 == 0)
{
return false;
}
else
{
return true;
}
} /// <summary>
/// 判断点是否在多边形内.
/// ----------原理----------
/// 注意到如果从P作水平向左的射线的话,如果P在多边形内部,那么这条射线与多边形的交点必为奇数,
/// 如果P在多边形外部,则交点个数必为偶数(0也在内)。
/// </summary>
/// <param name="checkPoint">要判断的点</param>
/// <param name="polygonPoints">多边形的顶点</param>
/// <returns></returns>
public static bool IsInPolygon(Position checkPoint, List<Position> polygonPoints)
{
bool inside = false;
int pointCount = polygonPoints.Count;
Position p1, p2;
for (int i = 0, j = pointCount - 1; i < pointCount; j = i, i++)//第一个点和最后一个点作为第一条线,之后是第一个点和第二个点作为第二条线,之后是第二个点与第三个点,第三个点与第四个点...
{
p1 = polygonPoints[i];
p2 = polygonPoints[j];
if (checkPoint.y < p2.y)
{//p2在射线之上
if (p1.y <= checkPoint.y)
{//p1正好在射线中或者射线下方
if ((checkPoint.y - p1.y) * (p2.x - p1.x) > (checkPoint.x - p1.x) * (p2.y - p1.y))//斜率判断,在P1和P2之间且在P1P2右侧
{
//射线与多边形交点为奇数时则在多边形之内,若为偶数个交点时则在多边形之外。
//由于inside初始值为false,即交点数为零。所以当有第一个交点时,则必为奇数,则在内部,此时为inside=(!inside)
//所以当有第二个交点时,则必为偶数,则在外部,此时为inside=(!inside)
inside = (!inside);
}
}
}
else if (checkPoint.y < p1.y)
{
//p2正好在射线中或者在射线下方,p1在射线上
if ((checkPoint.y - p1.y) * (p2.x - p1.x) < (checkPoint.x - p1.x) * (p2.y - p1.y))//斜率判断,在P1和P2之间且在P1P2右侧
{
inside = (!inside);
}
}
}
return inside;
}

  

/// <summary>          /// 判断点是否在多边形内.          /// ----------原理----------          /// 注意到如果从P作水平向左的射线的话,如果P在多边形内部,那么这条射线与多边形的交点必为奇数,          /// 如果P在多边形外部,则交点个数必为偶数(0也在内)。          /// 所以,我们可以顺序考虑多边形的每条边,求出交点的总个数。还有一些特殊情况要考虑。假如考虑边(P1,P2),          /// 1)如果射线正好穿过P1或者P2,那么这个交点会被算作2次,处理办法是如果P的从坐标与P1,P2中较小的纵坐标相同,则直接忽略这种情况          /// 2)如果射线水平,则射线要么与其无交点,要么有无数个,这种情况也直接忽略。          /// 3)如果射线竖直,而P0的横坐标小于P1,P2的横坐标,则必然相交。          /// 4)再判断相交之前,先判断P是否在边(P1,P2)的上面,如果在,则直接得出结论:P再多边形内部。          /// </summary>          /// <param name="checkPoint">要判断的点</param>          /// <param name="polygonPoints">多边形的顶点</param>          /// <returns></returns>          public static bool IsInPolygon2(Position checkPoint, List<Position> polygonPoints)        {            int counter = 0;            int i;            double xinters;            Position p1, p2;            int pointCount = polygonPoints.Count;            p1 = polygonPoints[0];            for (i = 1; i <= pointCount; i++)            {                p2 = polygonPoints[i % pointCount];                if (checkPoint.y > Math.Min(p1.y, p2.y)//校验点的Y大于线段端点的最小Y                      && checkPoint.y <= Math.Max(p1.y, p2.y))//校验点的Y小于线段端点的最大Y                  {                    if (checkPoint.x <= Math.Max(p1.x, p2.x))//校验点的X小于等线段端点的最大X(使用校验点的左射线判断).                      {                        if (p1.y != p2.y)//线段不平行于X轴                          {                            xinters = (checkPoint.y - p1.y) * (p2.x - p1.x) / (p2.y - p1.y) + p1.x;                            if (p1.x == p2.x || checkPoint.x <= xinters)                            {                                counter++;                            }                        }                    }
                }                p1 = p2;            }
            if (counter % 2 == 0)            {                return false;            }            else            {                return true;            }        }
        /// <summary>          /// 判断点是否在多边形内.          /// ----------原理----------          /// 注意到如果从P作水平向左的射线的话,如果P在多边形内部,那么这条射线与多边形的交点必为奇数,          /// 如果P在多边形外部,则交点个数必为偶数(0也在内)。          /// </summary>          /// <param name="checkPoint">要判断的点</param>          /// <param name="polygonPoints">多边形的顶点</param>          /// <returns></returns>          public static bool IsInPolygon(Position checkPoint, List<Position> polygonPoints)        {            bool inside = false;            int pointCount = polygonPoints.Count;            Position p1, p2;            for (int i = 0, j = pointCount - 1; i < pointCount; j = i, i++)//第一个点和最后一个点作为第一条线,之后是第一个点和第二个点作为第二条线,之后是第二个点与第三个点,第三个点与第四个点...              {                p1 = polygonPoints[i];                p2 = polygonPoints[j];                if (checkPoint.y < p2.y)                {//p2在射线之上                      if (p1.y <= checkPoint.y)                    {//p1正好在射线中或者射线下方                          if ((checkPoint.y - p1.y) * (p2.x - p1.x) > (checkPoint.x - p1.x) * (p2.y - p1.y))//斜率判断,在P1和P2之间且在P1P2右侧                          {                            //射线与多边形交点为奇数时则在多边形之内,若为偶数个交点时则在多边形之外。                              //由于inside初始值为false,即交点数为零。所以当有第一个交点时,则必为奇数,则在内部,此时为inside=(!inside)                              //所以当有第二个交点时,则必为偶数,则在外部,此时为inside=(!inside)                              inside = (!inside);                        }                    }                }                else if (checkPoint.y < p1.y)                {                    //p2正好在射线中或者在射线下方,p1在射线上                      if ((checkPoint.y - p1.y) * (p2.x - p1.x) < (checkPoint.x - p1.x) * (p2.y - p1.y))//斜率判断,在P1和P2之间且在P1P2右侧                      {                        inside = (!inside);                    }                }            }            return inside;        }

点在多边形内算法,C#判断一个点是否在一个复杂多边形的内部的更多相关文章

  1. Mysql中判断一个点是否落在多边形内

    关于地理空间数据,经常需要处理两个空间数据的关联关系.有很多种方法可以处理,通过编写程序算法,或者是调用数据库中对应的function.在mysql数据库中,https://dev.mysql.com ...

  2. C#算法之判断一个字符串是否是对称字符串

    记得曾经一次面试时,面试官给我电脑,让我现场写个算法,判断一个字符串是不是对称字符串.我当时用了几分钟写了一个很简单的代码. 这里说的对称字符串是指字符串的左边和右边字符顺序相反,如"abb ...

  3. js 判断一个点是否在一个多边形之内

    出处: https://github.com/substack/point-in-polygon/blob/master/index.js github: https://github.com/sub ...

  4. 判断点在多边形内算法的C++实现

    目录 1. 算法思路 2. 具体实现 3. 改进空间 1. 算法思路 判断平面内点是否在多边形内有多种算法,其中射线法是其中比较好理解的一种,而且能够支持凹多边形的情况.该算法的思路很简单,就是从目标 ...

  5. [算法]Python判断一个点是否在多边形内部

    题目: 代码: # -*- coding:utf-8 -*- def rayCasting(p, poly): px = p['x'] py = p['y'] flag = False i = 0 l ...

  6. python中如何不区分大小写的判断一个元素是否在一个列表中

    python中判断某一个元素是否在一个列表中,可以使用关键字in 和 not in. 示例如下: 如果需要输出相应的信息,可以搭配使用if语句,这里不赘述. --------------------- ...

  7. php 判断一个点是否在一个多边形区域内

    <?php class pointMap{ private static $coordArray; private static $vertx = []; private static $ver ...

  8. js 算法,判断一个数组中的数字出现多少次

    let arr = [11, 11, 2, 2, 5, 5, 5, 5, 3]; //创建一个map,把每个数字和其个数相对应 let countObj = {}; for (i = 0; i < ...

  9. JavaScript 中 如何判断一个元素是否在一个数组中

    <script type="text/javascript"> var arrList=['12','qw','q','v','d','t']; console.log ...

随机推荐

  1. 转:VMWare服务器虚拟化--转自CSDN

    http://blog.csdn.net/kkfloat/article/category/1249845/3

  2. 【逆向知识】裸函数(Naked函数)

    1 说明 指定裸函数编写的函数,编译器生成不带任何多余代码. 利用此功能,可以使用内联汇编程序代码编写自己的 prolog/epilog 代码序列. 裸函数对于编写虚拟设备驱动程序特别有用. 2 练习 ...

  3. C++ 螺旋矩阵算法

    清理磁盘空间的时候翻出了多年前写过的螺旋矩阵,代码效率和水平较低,纪念一下,保存到博客园! // ConsoleApplication3.cpp : 定义控制台应用程序的入口点. // #includ ...

  4. OPENCV SVM介绍和自带例子

    依据机器学习算法如何学习数据可分为3类:有监督学习:从有标签的数据学习,得到模型参数,对测试数据正确分类:无监督学习:没有标签,计算机自己寻找输入数据可能的模型:强化学习(reinforcement ...

  5. 网络协议之TLS

    前言 由于在TCP.UDP等方式传输数据时,数据包有可能被其他人截获,并解析出信息,这就给信息安全带来了很大的挑战.最初的SSL协议被网景公司提出,它不会影响上层协议(如HTTP.电子邮件等),但可以 ...

  6. poj 2253 一条路径中的最大边 再找出最小的

    题目大意,有两只青蛙,分别在两个石头上,青蛙A想要到青蛙B那儿去,他可以直接跳到B的石头上,也可以跳到其他石头上,再从其他石头跳到B那儿,求青蛙从A到B的所有路径中最小的Frog Distance,我 ...

  7. kafka 查看队列信息

    https://blog.csdn.net/getyouwant/article/details/81209286?utm_source=blogxgwz8

  8. CentOS7.x使用overlay文件系统

    https://www.cnblogs.com/yufeng218/p/8370670.html http://www.cnblogs.com/lehuoxiong/p/9908118.html ht ...

  9. mysql 索引理解

    数据的查询,都需要将数据从磁盘中加载到内存中进行运算加载,索引的出现,让原来每个数据块做一次IO减少为区间范围的快速定位,来减少块的io次数. 如上图,是一颗b+树,关于b+树的定义可以参见B+树,这 ...

  10. 034 Spark Sql的入门介绍

    一:进程介绍 1.use sql 2.shark 3.spark sql 4.终止shark 5.进程线 二:spark sql细节介绍 1.hive 与sparkSql比较(以后具体学习) 2.使用 ...