题目链接:ヾ(≧∇≦*)ゝ

大致题意:

给出一个有向图D=(V,E).对于每个点U,定义两种操作a(u),b(u)

操作a(u):删除点U的所有出边,即属于E,操作花费为Ca(u).

操作b(u):删除点U的所有入边,即属于E,操作花费为Cb(u).

求将原图的边集的边全部删除的最小代价,总操作数和具体操作

Solution:

第一问很简单,首先,对于每一个点,把它分成出点和入点。

把每个点的出点与S相连,入点与T相连。边容量分别为删除该点所有入边和出边的花费。

然后对于每条边 a -> b,就把a的出点与b的入点连一条容量为inf的边。

根据最大流=最小割,跑一遍dinic就能得到答案了。

对于第二、三问,我们分别统计a操作和b操作。

我们先对剩余网络进行bfs(),把能够扫到的点都标记为1,不能的标记为0。

对于一个点u,如果要使用a(u),那么显然,需要至少存在一个点v,满足u -> v &&

vis[u]vis[v]0。

而对于点u,如果要使用b(u),只需要满足vis[u]==1就行了。

为了防止重复输出,在定义一个apr数组记录每个数是否加入到答案中就行了。

详见代码

Code:

#include<queue>
#include<ctype.h>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 1001
#define M 20001
#define inf 1926081700
using namespace std;
int S,T,head[N];
int n,m,cnt=1;
int ru[N],cu[N];
int ans,vis[N],apr[N];
int t1,t2,fst[N],sec[N];
struct Edge{int nxt,to,val;}edge[M];
void ins(int x,int y,int z){
edge[++cnt].nxt=head[x];
edge[cnt].to=y;edge[cnt].val=z;
head[x]=cnt;
}
namespace Network_Flow{
queue<int> q;
int dep[N];
int bfs(){
memset(dep,0,sizeof(dep));
q.push(S);dep[S]=1;
while(!q.empty()){
int x=q.front();q.pop();
for(int i=head[x];i;i=edge[i].nxt){
int y=edge[i].to,v=edge[i].val;
if(!dep[y]&&v){
q.push(y);
dep[y]=dep[x]+1;
}
}
}
return dep[T];
}
int dfs(int x,int rest){
if(x==T||rest<=0) return rest;
int flow=0;
for(int i=head[x];i;i=edge[i].nxt){
int y=edge[i].to,v=edge[i].val;
if(dep[y]==dep[x]+1&&v){
int now=dfs(y,min(rest,v));
edge[i].val-=now;
edge[i^1].val+=now;
flow+=now;rest-=now;
if(!rest) break;
}
}
return flow;
}
int dinic(){
int maxflow=0;
while(bfs()) maxflow+=dfs(S,inf);
return maxflow;
}
}
void getspj(){
queue<int> s;
s.push(S);vis[S]=1;
while(!s.empty()){
int x=s.front();s.pop();
for(int i=head[x];i;i=edge[i].nxt)
if(!vis[edge[i].to]&&edge[i].val){
s.push(edge[i].to);
vis[edge[i].to]=1;
}
}
apr[S]=apr[T]=1;
}
int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-f;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-48;ch=getchar();}
return x*f;
}
int main(){
n=read(),m=read();
S=n*2+1,T=S+1;
for(int i=1;i<=n;i++) ru[i]=read();
for(int i=1;i<=n;i++) cu[i]=read();
for(int i=1;i<=n;i++){
ins(S,i,cu[i]);ins(i,S,0);
ins(i+n,T,ru[i]);ins(T,i+n,0);
}
for(int x,y,i=1;i<=m;i++){
x=read(),y=read();
ins(x,n+y,inf);
ins(n+y,x,0);
}
using namespace Network_Flow;
printf("%d\n",dinic());getspj();
for(int i=1;i<=n;i++)
for(int j=head[i];j;j=edge[j].nxt){
int y=edge[j].to;
if(!vis[i]&&!vis[y]&&!apr[i]){
sec[++t2]=i;
ans++;apr[i]=1;
}
if(!apr[y]&&vis[y]){
fst[++t1]=y%n;
if(!fst[t1]) fst[t1]=n;
ans++;apr[y]=1;
}
}
printf("%d\n",ans);
for(int i=1;i<=t1;i++) printf("%d +\n",fst[i]);
for(int i=1;i<=t2;i++) printf("%d -\n",sec[i]);
return 0;
}

POJ2125 Destroying The Graph的更多相关文章

  1. POJ2125 Destroying The Graph (最小点权覆盖集)(网络流最小割)

                                                          Destroying The Graph Time Limit: 2000MS   Memo ...

  2. POJ2125 Destroying The Graph(二分图最小点权覆盖集)

    最小点权覆盖就是,对于有点权的有向图,选出权值和最少的点的集合覆盖所有的边. 解二分图最小点权覆盖集可以用最小割: vs-X-Y-vt这样连边,vs和X部点的连边容量为X部点的权值,Y部和vt连边容量 ...

  3. POJ2125 Destroying The Graph 二分图 + 最小点权覆盖 + 最小割

    思路来源:http://blog.csdn.net/lenleaves/article/details/7873441 求最小点权覆盖,同样求一个最小割,但是要求出割去了那些边, 只要用最终的剩余网络 ...

  4. POJ 2125 Destroying the Graph 二分图最小点权覆盖

    Destroying The Graph Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8198   Accepted: 2 ...

  5. 【POJ】【2125】Destroying the Graph

    网络流/二分图最小点权覆盖 果然还是应该先看下胡伯涛的论文…… orz proverbs 题意: N个点M条边的有向图,给出如下两种操作.删除点i的所有出边,代价是Ai.删除点j的所有入边,代价是Bj ...

  6. 图论(网络流,二分图最小点权覆盖):POJ 2125 Destroying The Graph

    Destroying The Graph   Description Alice and Bob play the following game. First, Alice draws some di ...

  7. POJ 2125 Destroying The Graph [最小割 打印方案]

    Destroying The Graph Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8311   Accepted: 2 ...

  8. poj 2125 Destroying The Graph (最小点权覆盖)

    Destroying The Graph http://poj.org/problem?id=2125 Time Limit: 2000MS   Memory Limit: 65536K       ...

  9. AC日记——Destroying The Graph poj 2125

    Destroying The Graph Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8356   Accepted: 2 ...

随机推荐

  1. Eclipse-安装Spring Tool Suit 插件

    登录http://spring.io/tools/sts/all 下载所需的Spring Tool Suit安装包 我用的是springsource-tool-suite-3.6.1.RELEASE- ...

  2. ccf201703-1分蛋糕

    问题描述 小明今天生日,他有n块蛋糕要分给朋友们吃,这n块蛋糕(编号为1到n)的重量分别为a1, a2, …, an.小明想分给每个朋友至少重量为k的蛋糕.小明的朋友们已经排好队准备领蛋糕,对于每个朋 ...

  3. Python3入门(七)——模块

    在Python中,一个.py文件就称之为一个模块(Module).(例如main.py就称之为main模块) 为了避免模块名冲突,Python又引入了按目录来组织模块的方法,称为包(Package). ...

  4. 20155217《网络对抗》Exp04 恶意代码分析

    20155217<网络对抗>Exp04 恶意代码分析 实践内容 使用schtasks指令监控系统运行 使用sysmon工具监控系统运行 使用virscan分析恶意软件 使用systrace ...

  5. WPF自定义控件的自定义属性绑定后不更新问题

    原文:WPF自定义控件的自定义属性绑定后不更新问题 需要在绑定时设置属性变更触发 UpdateSourceTrigger=PropertyChanged 例如: <Border CornerRa ...

  6. ActiveMQ 的安装与使用(springboot版本)

    一.安装 上官网下载tar包 http://activemq.apache.org/ tar -zxvf 后进入bin/linux-86-64 ./activimq start 启动 二.使用 pom ...

  7. makefile怎么写?

    参考:https://blog.csdn.net/haoel/article/details/2886    https://blog.csdn.net/haoel/article/details/2 ...

  8. 老项目迁移到 springboot 过程

    打算把detectx迁移,毕竟springboot更适合它, 首先我是用的快速建立的项目,springboot版本为 1.5.19.RELEASE ,官网查了下,这个是GA稳定生产环境版本 然后如果要 ...

  9. 萌新程序媛的首个作品,基于NoSQL的内容管理及低码开发平台

    尽管入行有一段时间了,但之前还从来没想过要开发一款完整的软件产品.这个我跟朋友开发的第一款软件,希望大家帮我们多宣传推广.首个版本肯定有很多的不足,大家也给我们多提意见,还有很多规划中的功能要在之后的 ...

  10. jupyter notebook 更改工作环境和浏览器

    转载自:https://blog.csdn.net/u011141114/article/details/78556227 1 修改默认目录 最近刚刚开始学习Python,比较好的一个IDE就是jup ...