【刷题】LOJ 6121 「网络流 24 题」孤岛营救问题
题目描述
1944 年,特种兵麦克接到国防部的命令,要求立即赶赴太平洋上的一个孤岛,营救被敌军俘虏的大兵瑞恩。瑞恩被关押在一个迷宫里,迷宫地形复杂,但幸好麦克得到了迷宫的地形图。迷宫的外形是一个长方形,其南北方向被划分为 \(n\) 行,东西方向被划分为 \(m\) 列, 于是整个迷宫被划分为 \(n \times m\) 个单元。每一个单元的位置可用一个有序数对 (单元的行号, 单元的列号) 来表示。南北或东西方向相邻的 \(2\) 个单元之间可能互通,也可能有一扇锁着的门,或者是一堵不可逾越的墙。迷宫中有一些单元存放着钥匙,并且所有的门被分成 \(p\) 类, 打开同一类的门的钥匙相同,不同类门的钥匙不同。
大兵瑞恩被关押在迷宫的东南角,即 \((n,m)\) 单元里,并已经昏迷。迷宫只有一个入口, 在西北角。也就是说,麦克可以直接进入 \((1,1)\) 单元。另外,麦克从一个单元移动到另一个 相邻单元的时间为 \(1\) ,拿取所在单元的钥匙的时间以及用钥匙开门的时间可忽略不计。
试设计一个算法,帮助麦克以最快的方式到达瑞恩所在单元,营救大兵瑞恩。
输入格式
第一行有三个整数,分别表示 \(n,m,p\) 的值。
第二行是一个整数 \(k\) ,表示迷宫中门和墙的总数。
第 \(i+2\) 行 \((1 \leq i \leq k )\) ,有 \(5\) 个整数,依次为 \(x _{i1},y_{i1},x_{i2},y_{i2},g_i\) :当 \(g_i \geq1\) 时,表示 \((x_{i1},y_{i1})\) 单元与 \((x_{i2},y_{i2})\) 单元之间有一扇第 \(g_i\) 类的门,当 \(g_i = 0\) 时, 表示 \((x_{i1},y_{i1})\) 单元与 \((x_{i2},y_{i2})\) 单元之间有一堵不可逾越的墙。
第 \(k+3\) 行是一个整数 \(s\),表示迷宫中存放的钥匙总数。
第 \(k+3+j\) 行 \((1 \leq j \leq s)\) ,有 \(3\) 个整数,依次为 \(x_{i1},y_{i1},q_i\) ,表示第 \(j\) 把钥匙存放在 \((x_{i1},y_{i1})\) 单元里,并且第 \(j\) 把钥匙是用来开启第 \(q_i\) 类门。
输入数据中同一行各相邻整数之间用一个空格分隔。
输出格式
输出麦克营救到大兵瑞恩的最短时间。如果问题无解,则输出 \(-1\)。
样例
样例输入
4 4 9
9
1 2 1 3 2
1 2 2 2 0
2 1 2 2 0
2 1 3 1 0
2 3 3 3 0
2 4 3 4 1
3 2 3 3 0
3 3 4 3 0
4 3 4 4 0
2
2 1 2
4 2 1
样例输出
14
数据范围与提示
\(|x_{i1}-x_{i2}|+|y_{i1}-y_{i2}|=1, 0 \leq g_i \leq p\)
\(1\leq q_i \leq p\)
\(n,m,p \leq 10,\ k < 150\)
题解
又是一道不是网络流的网络流24题之一
状压钥匙的状态后类似SPFA跑最短路就好了
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=100+10,inf=0x3f3f3f3f;
int n,m,p,k,s,G[MAXN][MAXN],d[MAXN][1<<11],vis[MAXN][1<<11],dr[4][2]={{0,1},{1,0},{-1,0},{0,-1}},key[MAXN];
struct node{
int x,y,k;
};
std::queue<node> q;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline int id(int x,int y)
{
return (x-1)*m+y;
}
inline void SPFA()
{
memset(d,inf,sizeof(d));
d[id(1,1)][key[id(1,1)]]=0;
vis[id(1,1)][key[id(1,1)]]=1;
q.push((node){1,1,key[id(1,1)]});
while(!q.empty())
{
node pr=q.front();
q.pop();
int x=pr.x,y=pr.y,now=pr.k;
vis[id(x,y)][now]=0;
for(register int i=0;i<4;++i)
{
int dx=x+dr[i][0],dy=y+dr[i][1];
if(dx<1||dx>n||dy<1||dy>m)continue;
if(G[id(x,y)][id(dx,dy)]==-1||(now&(1<<G[id(x,y)][id(dx,dy)])))
{
int nxt=now|key[id(dx,dy)];
if(d[id(dx,dy)][nxt]>d[id(x,y)][now]+1)
{
d[id(dx,dy)][nxt]=d[id(x,y)][now]+1;
if(!vis[id(dx,dy)][nxt])vis[id(dx,dy)][nxt]=1,q.push((node){dx,dy,nxt});
}
}
}
}
}
int main()
{
read(n);read(m);read(p);
read(k);
memset(G,-1,sizeof(G));
for(register int i=1;i<=k;++i)
{
int x1,y1,x2,y2,g;read(x1);read(y1);read(x2);read(y2);read(g);
G[id(x1,y1)][id(x2,y2)]=G[id(x2,y2)][id(x1,y1)]=g;
}
read(s);
for(register int i=1;i<=s;++i)
{
int x,y,q;read(x);read(y);read(q);
key[id(x,y)]|=1<<q;
}
SPFA();
int ans=inf;
for(register int i=0;i<(1<<p+1);++i)chkmin(ans,d[id(n,m)][i]);
write(ans==inf?-1:ans,'\n');
return 0;
}
【刷题】LOJ 6121 「网络流 24 题」孤岛营救问题的更多相关文章
- loj #6121. 「网络流 24 题」孤岛营救问题
#6121. 「网络流 24 题」孤岛营救问题 题目描述 1944 年,特种兵麦克接到国防部的命令,要求立即赶赴太平洋上的一个孤岛,营救被敌军俘虏的大兵瑞恩.瑞恩被关押在一个迷宫里,迷宫地形复杂, ...
- 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题
题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...
- [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划
[luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划 试题描述 一个餐厅在相继的 \(N\) 天里,第 \(i\) 天需要 \(R_i\) 块餐巾 \((i=l,2,-,N)\) ...
- [LOJ#6002]「网络流 24 题」最小路径覆盖
[LOJ#6002]「网络流 24 题」最小路径覆盖 试题描述 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交)的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是 ...
- loj #6014. 「网络流 24 题」最长 k 可重区间集
#6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...
- loj #6013. 「网络流 24 题」负载平衡
#6013. 「网络流 24 题」负载平衡 题目描述 G 公司有 n nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n nn 个仓库的库存数量相同.搬运货物时 ...
- loj #6122. 「网络流 24 题」航空路线问题
#6122. 「网络流 24 题」航空路线问题 题目描述 给定一张航空图,图中顶点代表城市,边代表两个城市间的直通航线.现要求找出一条满足下述限制条件的且途经城市最多的旅行路线. 从最西端城市出发,单 ...
- loj #6226. 「网络流 24 题」骑士共存问题
#6226. 「网络流 24 题」骑士共存问题 题目描述 在一个 n×n\text{n} \times \text{n}n×n 个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上 ...
- [loj #6003]「网络流 24 题」魔术球 二分图最小路径覆盖,网络流
#6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 ...
随机推荐
- jquery mouseover与mouseenter区别
<!DOCTYPE html> <html lang="en" xmlns="http://www.w3.org/1999/xhtml"> ...
- NLB网路负载均衡管理器详解(转载)
序言 在上一篇配置iis负载均衡中我们使用啦微软的ARR,我在那篇文章也中提到了网站的高可用性,但是ARR只能做请求入口的消息分发服务,这样如果我们的消息分发服务器给down掉啦,那么做再多的应用服务 ...
- 20155321 《网络攻防》 Exp9 Web安全基础
20155321 <网络攻防> Exp9 Web安全基础 基础问题 SQL注入攻击原理,如何防御 原理:在事先定义好的SQL语句的结尾上添加额外的SQL语句(感觉一般是或上一个永真式),以 ...
- Dynamics CRM2016 导入数据格式之xlsx的应用
在CRM中导入数据中新增加了一个xlsx格式,这个在之前的版本(2013中没有,2015不清楚是否有)中是没有的 本篇的目的就是为了提醒各位,不要把这个格式和csv的导入功能混淆,因为xlsx格式的用 ...
- 学习JAVA第一章的心得
我抱着万分期待的心情开始了我第一天的JAVA学习课程,其实在第一开始的时候我对计算机行业便有很高地兴趣了.这主要归功于我真的从很小开始就就接触了电脑.进入学校以来,我就很期待老师会怎样教我们,会怎样带 ...
- P问题,NP问题,NPC问题,NP-hard问题
1.P问题:一个问题能找到一个在多项式时间里解决他的算法 多项式时间(o(1),o(lgn),o(n的a次方)) 非多项式时间 o(a的n次方) o(n!) 2.NP问题:在多项式时间找不到问题的解 ...
- Vue.js动态组件
动态组件: 1.定义: 几个组件放在同一个挂载点下,然后根据父组件的某个变量来决定显示哪个,或者都不显示. 2.动态切换原理: 在挂载点使用<component>标签,然后使用v-bind ...
- HashMap 源码解析(一)之使用、构造以及计算容量
目录 简介 集合和映射 HashMap 特点 使用 构造 相关属性 构造方法 tableSizeFor 函数 一般的算法(效率低, 不值得借鉴) tableSizeFor 函数算法 效率比较 tabl ...
- 重置Oracle配置
经常被ORACLE坑,作为一个只需要开发时候连连ORACLE的程序员,在经历了一次又一次的折腾之后,决定还是把这些琐碎的事情写下来. 经常在虚拟机中使用ORACLE,ORACLE的网络配置有一些变化就 ...
- 软件测试--w模型
W模型 优点:开发把随着整个开发周期,需求.和设计同样要测试,更早的介入测试,可以发现初期的缺陷,修复成本低:分阶段工作方便项目整体管理: 缺点:开发和测试依然是线性关系,需求的变更和调整,依然不方便 ...