题目描述

Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ≤ 12) square parcels. He wants to grow some yummy corn for the cows on a number of squares. Regrettably, some of the squares are infertile and can't be planted. Canny FJ knows that the cows dislike eating close to each other, so when choosing which squares to plant, he avoids choosing squares that are adjacent; no two chosen squares share an edge. He has not yet made the final choice as to which squares to plant.

Being a very open-minded man, Farmer John wants to consider all possible options for how to choose the squares for planting. He is so open-minded that he considers choosing no squares as a valid option! Please help Farmer John determine the number of ways he can choose the squares to plant.

农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ 12; 1 ≤ N ≤ 12),每一格都是一块正方形的土地。John打算在牧场上的某几格里种上美味的草,供他的奶牛们享用。

遗憾的是,有些土地相当贫瘠,不能用来种草。并且,奶牛们喜欢独占一块草地的感觉,于是John不会选择两块相邻的土地,也就是说,没有哪两块草地有公共边。

John想知道,如果不考虑草地的总块数,那么,一共有多少种种植方案可供他选择?(当然,把新牧场完全荒废也是一种方案)

输入输出格式

输入格式:

第一行:两个整数M和N,用空格隔开。

第2到第M+1行:每行包含N个用空格隔开的整数,描述了每块土地的状态。第i+1行描述了第i行的土地,所有整数均为0或1,是1的话,表示这块土地足够肥沃,0则表示这块土地不适合种草。

输出格式:

一个整数,即牧场分配总方案数除以100,000,000的余数。

输入输出样例

输入样例#1:
复制

2 3
1 1 1
0 1 0
输出样例#1: 复制

9

Solution:
  
一道标准动规题,由n<=12很容易联想到状压,如果定义dp[i][j]表示i,j这个点左上部分的矩阵的方案数,但是不好转移,并且状压没有体现。
  这时候我们可以想,状压压什么,可以直接压一行种草的位置,种草即为1,不种草即为0,这时候可以定义dp[i][k] i表示到第i行,状态为k时前面的状态
  转移方程就很容易想了,dp[i][k]是由上一行状态转移过来。
  简单来说:dp[i][k]=∑(k'满足情况) dp[i-1][k']
  k'需要满足什么情况呢:
    1.满足输入矩阵规定的1与0,即判断每个位置种草是否合法
    2.满足不与上一行冲突,保证上一行状态为1的位置,这一行不为1,这就把两个状态&计算起来,即k&k' 若为0,即不冲突(可以好好理解下)
  然后一行一行dp计算就可以了

Code:
  
 //It is coded by Ning_Mew on 2.25
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
const int MOD=;
int n,m,ans=;
int a[][];
int num[][];
int dp[][<<]; void dfs(int x,int y){
if(y>m){x++;y=;}
if(x==n+&&y==){ans++;ans%=MOD;return;}
if(a[x][y]){
if(num[x-][y]||num[x][y-]){
num[x][y]=;dfs(x,y+);
}
else{
num[x][y]=;dfs(x,y+);
num[x][y]=;dfs(x,y+);
}
}
else{num[x][y]=;dfs(x,y+);}
return;
}
bool check(int k,int l){
for(int i=;i<=m;i++){
int ii=+m-i;
//cout<<k<<' '<<ii<<' '<<((k>>(i-1))&1)<<endl;
if(a[l][ii]==&&((k>>(ii-))&)==)return false;
}
for(int i=;i<=m;i++){
int ii=+m-i;
if((k>>(ii-)&)==&&((k>>ii)&==))return false;
}
return true;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){scanf("%d",&a[i][j]);}
}
if(n<=&&m<=){
dfs(,);
printf("%d\n",ans);return ;
} for(int i=;i<=(<<m)-;i++){
if(check(i,)){
//cout<<i<<endl;
dp[][i]=;
}
}
for(int i=;i<=n;i++){
for(int k=;k<=(<<m)-;k++){
if(!check(k,i))continue;
for(int kk=;kk<=(<<m)-;kk++){
if((k&kk)==){
dp[i][k]=dp[i][k]+dp[i-][kk];
dp[i][k]=dp[i][k]%MOD;
}
}
}
}
for(int i=;i<=(<<m)-;i++)ans=(ans+dp[n][i])%MOD;
printf("%d\n",ans);
return ;
}

  转载附上本蒟蒻的链接和我说一声就ok了~  http://www.cnblogs.com/Ning-Mew/p/8469408.html

 

【题解】 P1879 玉米田Corn Fields (动态规划,状态压缩)的更多相关文章

  1. 洛谷P1879 [USACO06NOV]玉米田Corn Fields (状态压缩DP)

    题目描述 Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ...

  2. 洛谷 P1879 玉米田Corn Fields 题解

    题面 一道思维难度不大的状态压缩,也并不卡常,但细节处理要格外注意: f[i][j]表示前i行最后一行状态是j的方案数 #include <bits/stdc++.h> #define p ...

  3. 洛谷 P1879 [USACO06NOV]玉米田Corn Fields 题解

    P1879 [USACO06NOV]玉米田Corn Fields 题目描述 Farmer John has purchased a lush new rectangular pasture compo ...

  4. 状压DP【洛谷P1879】 [USACO06NOV]玉米田Corn Fields

    P1879 [USACO06NOV]玉米田Corn Fields 农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ 12; 1 ≤ N ≤ 12),每一格都是一块正方形 ...

  5. C++ 洛谷 P1879 [USACO06NOV]玉米田Corn Fields

    没学状压DP的看一下 合法布阵问题  P1879 [USACO06NOV]玉米田Corn Fields 题意:给出一个n行m列的草地(n,m<=12),1表示肥沃,0表示贫瘠,现在要把一些牛放在 ...

  6. P1879 [USACO06NOV]玉米田Corn Fields(状压dp)

    P1879 [USACO06NOV]玉米田Corn Fields 状压dp水题 看到$n,m<=12$,肯定是状压鸭 先筛去所有不合法状态,蓝后用可行的状态跑一次dp就ok了 #include& ...

  7. 洛谷P1879 [USACO06NOV]玉米田Corn Fields(状压dp)

    洛谷P1879 [USACO06NOV]玉米田Corn Fields \(f[i][j]\) 表示前 \(i\) 行且第 \(i\) 行状态为 \(j\) 的方案总数.\(j\) 的大小为 \(0 \ ...

  8. 【洛谷P1879】玉米田Corn Fields

    玉米田Corn Fields 题目链接 此题和互不侵犯状压DP的做法类似 f[i][j]表示前i行,第i行种植(1)/不种植(0)构成的二进制数为j时的方案数 首先我们可以预处理出所有一行中没有两个相 ...

  9. poj3254 Corn Fields 利用状态压缩求方案数;

    Corn Fields 2015-11-25 13:42:33 Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10658   ...

随机推荐

  1. LED驱动电源

    LED驱动电源       LED驱动电源,你了解多少? LED驱动电源是把电源供应转换为特定的电压电流以驱动LED发光的电压转换器,通常情况下:LED驱动电源的输入包括高压工频交流(即市电).低压直 ...

  2. 搭建Hadoop的HA高可用架构(超详细步骤+已验证)

    一.集群的规划 Zookeeper集群: 192.168.182.12 (bigdata12)192.168.182.13 (bigdata13)192.168.182.14 (bigdata14) ...

  3. 微服务 Rpc和Rest协议

    原文:https://blog.csdn.net/king866/article/details/54174665 接口调用通常包含两个部分,序列化和通信协议.常见的序列化协议包括json.xml.h ...

  4. Redis发布订阅和事物笔记

    Redis 发布订阅 Redis 发布订阅(pub/sub)是一种消息通信模式:发送者(pub)发送消息,订阅者(sub)接收消息. Redis 客户端可以订阅任意数量的频道. 下图展示了频道 cha ...

  5. C# 基于泛型的自定义线性节点链表集合示例

    本例子实现了如何自定义线性节点集合,具体代码如下: using System; using System.Collections; using System.Collections.Generic; ...

  6. OpenStack与OpenDaylight的对接过程

    由于项目中需要使用OpenDaylight(Oxygen)替换OpenStack(Otaca)中的neutron-openvswitch-agent,能找到的一些资料都是比较旧的版本,官网上的文档也一 ...

  7. package.json 中 npm 依赖包版本前的符号的意义

    版本的格式 major.minor.patch:主版本号.次版本号.修补版本号 patch:修复bug,兼容老版本 minor:新增功能,兼容老版本 major:新增功能,不兼容老版本 version ...

  8. OAuth 2.0 Salesforce & Azure

    最近在学习Salesforce,浅谈一下 OAuth 2.0 在Salesforce and Azure 之间的应用. 假设有这样一个场景,在Salesforce中需要用到Azure中的一些服务,那么 ...

  9. JavaScript中执行环境和栈

    在这篇文章中,我会深入理解JavaScript最根本的组成之一 : "执行环境(执行上下文)".文章结束后,你应该对解释器试图做什么,为什么一些函数/变量在未声明时就可以调用并且他 ...

  10. PAT甲题题解-1074. Reversing Linked List (25)-求反向链表

    题意说的很清楚了,这种题的话,做的时候最好就是在纸上自己亲手模拟一下,清楚一下各个指针的情况, 这样写的时候就很清楚各个指针变量保存的是什么值. PS:一次AC哈哈,所以说自己动手在纸上画画还是很有好 ...