题目描述

Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ≤ 12) square parcels. He wants to grow some yummy corn for the cows on a number of squares. Regrettably, some of the squares are infertile and can't be planted. Canny FJ knows that the cows dislike eating close to each other, so when choosing which squares to plant, he avoids choosing squares that are adjacent; no two chosen squares share an edge. He has not yet made the final choice as to which squares to plant.

Being a very open-minded man, Farmer John wants to consider all possible options for how to choose the squares for planting. He is so open-minded that he considers choosing no squares as a valid option! Please help Farmer John determine the number of ways he can choose the squares to plant.

农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ 12; 1 ≤ N ≤ 12),每一格都是一块正方形的土地。John打算在牧场上的某几格里种上美味的草,供他的奶牛们享用。

遗憾的是,有些土地相当贫瘠,不能用来种草。并且,奶牛们喜欢独占一块草地的感觉,于是John不会选择两块相邻的土地,也就是说,没有哪两块草地有公共边。

John想知道,如果不考虑草地的总块数,那么,一共有多少种种植方案可供他选择?(当然,把新牧场完全荒废也是一种方案)

输入输出格式

输入格式:

第一行:两个整数M和N,用空格隔开。

第2到第M+1行:每行包含N个用空格隔开的整数,描述了每块土地的状态。第i+1行描述了第i行的土地,所有整数均为0或1,是1的话,表示这块土地足够肥沃,0则表示这块土地不适合种草。

输出格式:

一个整数,即牧场分配总方案数除以100,000,000的余数。

输入输出样例

输入样例#1:
复制

2 3
1 1 1
0 1 0
输出样例#1: 复制

9

Solution:
  
一道标准动规题,由n<=12很容易联想到状压,如果定义dp[i][j]表示i,j这个点左上部分的矩阵的方案数,但是不好转移,并且状压没有体现。
  这时候我们可以想,状压压什么,可以直接压一行种草的位置,种草即为1,不种草即为0,这时候可以定义dp[i][k] i表示到第i行,状态为k时前面的状态
  转移方程就很容易想了,dp[i][k]是由上一行状态转移过来。
  简单来说:dp[i][k]=∑(k'满足情况) dp[i-1][k']
  k'需要满足什么情况呢:
    1.满足输入矩阵规定的1与0,即判断每个位置种草是否合法
    2.满足不与上一行冲突,保证上一行状态为1的位置,这一行不为1,这就把两个状态&计算起来,即k&k' 若为0,即不冲突(可以好好理解下)
  然后一行一行dp计算就可以了

Code:
  
 //It is coded by Ning_Mew on 2.25
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
const int MOD=;
int n,m,ans=;
int a[][];
int num[][];
int dp[][<<]; void dfs(int x,int y){
if(y>m){x++;y=;}
if(x==n+&&y==){ans++;ans%=MOD;return;}
if(a[x][y]){
if(num[x-][y]||num[x][y-]){
num[x][y]=;dfs(x,y+);
}
else{
num[x][y]=;dfs(x,y+);
num[x][y]=;dfs(x,y+);
}
}
else{num[x][y]=;dfs(x,y+);}
return;
}
bool check(int k,int l){
for(int i=;i<=m;i++){
int ii=+m-i;
//cout<<k<<' '<<ii<<' '<<((k>>(i-1))&1)<<endl;
if(a[l][ii]==&&((k>>(ii-))&)==)return false;
}
for(int i=;i<=m;i++){
int ii=+m-i;
if((k>>(ii-)&)==&&((k>>ii)&==))return false;
}
return true;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){scanf("%d",&a[i][j]);}
}
if(n<=&&m<=){
dfs(,);
printf("%d\n",ans);return ;
} for(int i=;i<=(<<m)-;i++){
if(check(i,)){
//cout<<i<<endl;
dp[][i]=;
}
}
for(int i=;i<=n;i++){
for(int k=;k<=(<<m)-;k++){
if(!check(k,i))continue;
for(int kk=;kk<=(<<m)-;kk++){
if((k&kk)==){
dp[i][k]=dp[i][k]+dp[i-][kk];
dp[i][k]=dp[i][k]%MOD;
}
}
}
}
for(int i=;i<=(<<m)-;i++)ans=(ans+dp[n][i])%MOD;
printf("%d\n",ans);
return ;
}

  转载附上本蒟蒻的链接和我说一声就ok了~  http://www.cnblogs.com/Ning-Mew/p/8469408.html

 

【题解】 P1879 玉米田Corn Fields (动态规划,状态压缩)的更多相关文章

  1. 洛谷P1879 [USACO06NOV]玉米田Corn Fields (状态压缩DP)

    题目描述 Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ...

  2. 洛谷 P1879 玉米田Corn Fields 题解

    题面 一道思维难度不大的状态压缩,也并不卡常,但细节处理要格外注意: f[i][j]表示前i行最后一行状态是j的方案数 #include <bits/stdc++.h> #define p ...

  3. 洛谷 P1879 [USACO06NOV]玉米田Corn Fields 题解

    P1879 [USACO06NOV]玉米田Corn Fields 题目描述 Farmer John has purchased a lush new rectangular pasture compo ...

  4. 状压DP【洛谷P1879】 [USACO06NOV]玉米田Corn Fields

    P1879 [USACO06NOV]玉米田Corn Fields 农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ 12; 1 ≤ N ≤ 12),每一格都是一块正方形 ...

  5. C++ 洛谷 P1879 [USACO06NOV]玉米田Corn Fields

    没学状压DP的看一下 合法布阵问题  P1879 [USACO06NOV]玉米田Corn Fields 题意:给出一个n行m列的草地(n,m<=12),1表示肥沃,0表示贫瘠,现在要把一些牛放在 ...

  6. P1879 [USACO06NOV]玉米田Corn Fields(状压dp)

    P1879 [USACO06NOV]玉米田Corn Fields 状压dp水题 看到$n,m<=12$,肯定是状压鸭 先筛去所有不合法状态,蓝后用可行的状态跑一次dp就ok了 #include& ...

  7. 洛谷P1879 [USACO06NOV]玉米田Corn Fields(状压dp)

    洛谷P1879 [USACO06NOV]玉米田Corn Fields \(f[i][j]\) 表示前 \(i\) 行且第 \(i\) 行状态为 \(j\) 的方案总数.\(j\) 的大小为 \(0 \ ...

  8. 【洛谷P1879】玉米田Corn Fields

    玉米田Corn Fields 题目链接 此题和互不侵犯状压DP的做法类似 f[i][j]表示前i行,第i行种植(1)/不种植(0)构成的二进制数为j时的方案数 首先我们可以预处理出所有一行中没有两个相 ...

  9. poj3254 Corn Fields 利用状态压缩求方案数;

    Corn Fields 2015-11-25 13:42:33 Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10658   ...

随机推荐

  1. SonarQube-Centos环境设置为系统服务

    1.准备工作 官方文档:https://docs.sonarqube.org/latest/setup/operate-server/ 2.配置 /sonar.sh /usr/bin/sonar cd ...

  2. Mysql客户端软件

    Mysql客户端软件Navicat,使用起来很方便; PremiumSoft Navicat for MySQL Enterprise Edition v8.0.27姓名(Name):3ddown.c ...

  3. 【WPF】WPF截屏

    原文:[WPF]WPF截屏 引言 .NET的截图控件在网上流传得不多啊,难得发现一个精品截图控件( 传送门),但是无奈是winform的.后来又找到一个周银辉做的WPF截图(继续传送门),发现截屏是实 ...

  4. POJ2488&&3083&&3009&&1321&&2251&&2049

    刷完了大力数据结构(水比数据结构专题)后又开始搞无脑搜索专题了 这次的标签是DFS(这TM的到现在了谁还不会) 2488 跳马问题:给出一个棋盘,让你求一个方案使一匹马能花最短的时间不重复不遗漏地跳完 ...

  5. AWK处理数组

    转自ChinaUnix论坛,感谢作者整理. 在文本处理的工作中,awk的数组是必不可少的工具,在这里,同样以总结经验和教训的方式和大家分享下我的一些学习心得,如有错误的地方,请大家指正和补充. awk ...

  6. openssh7.9 升级笔记

    由于全网安全检查需要,要对项目中1280台Linux系统升级SSH及openssl,其中: OPENSSH 升级为 openssh 7.9p 下载地址:  openssl 升级为 1.0.2o 下载地 ...

  7. 洛咕 P3702 [SDOI2017]序列计数

    和https://www.cnblogs.com/xzz_233/p/10060753.html一样,都是多项式快速幂,还比那个题水. 设\(a[i]\)表示\([1,m]\)中$ \mod p\(余 ...

  8. Django实现websocket完成实时通讯、聊天室、在线客服等

    一 什么是Websocket WebSocket是一种在单个TCP连接上进行全双工通信的协议 WebSocket使得客户端和服务器之间的数据交换变得更加简单,允许服务端主动向客户端推送数据.在WebS ...

  9. SpringCloud+Boot简单例子笔记

    一.spring cloud简介 spring cloud 为开发人员提供了快速构建分布式系统的一些工具,包括配置管理.服务发现.断路器.路由.微代理.事件总线.全局锁.决策竞选.分布式会话等等.它运 ...

  10. pt-online-schema-change的实现原理

    pt-online-schema-change用于MySQL的在线DDL. 下面结合官方文档和general log来分析其实现原理. 测试表 mysql> show create table ...