1005: [HNOI2008]明明的烦恼

Time Limit: 1 Sec  Memory Limit: 162 MB
Submit: 4981  Solved: 1941

Description

  自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在
任意两点间连线,可产生多少棵度数满足要求的树?

Input

  第一行为N(0 < N < = 1000),
接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1

Output

  一个整数,表示不同的满足要求的树的个数,无解输出0

Sample Input

3
1
-1
-1

Sample Output

2

HINT

  两棵树分别为1-2-3;1-3-2

Source

【分析】

  先特判无解的情况。

  假设$sum=\sum(d[i]-1)|[d[i]!=-1]$

  $ss=\sum 1 [d[i]!=-1]$

  则$Ans=C_{n-2}^{sum}*\dfrac{sum!}{\Pi(d[i]-1)!}*(n-ss)^{n-2-sum}$

  即$Ans=\dfrac{(n-2)!}{(n-2-sum)!*\Pi(d[i]-1)!}*(n-ss)^{n-2-sum}$

  这些数值都不会超过n的,先手动消因子,然后Ans用高精度,就是高精乘单精。

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 1010
#define mod 10000 int cnt[Maxn],d[Maxn]; struct hugeint
{
int w[Maxn],l;
hugeint() {memset(w,,sizeof(w));l=;}
friend hugeint operator * (hugeint x,int y)
{
for(int i=;i<=x.l;i++) x.w[i]*=y;
for(int i=;i<=x.l;i++) x.w[i+]+=x.w[i]/mod,x.w[i]%=mod;
while(x.w[x.l+]!=) x.w[x.l+]+=x.w[x.l+]/mod,x.w[++x.l]%=mod;
while(x.w[x.l]==&&x.l>) x.l--;
return x;
}
}; void cal(int x,int y)
{
for(int i=;i<=x*x;i++) if(x%i==)
{
while(x%i==) cnt[i]+=y,x/=i;
}
if(x!=) cnt[x]+=y;
} int main()
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",&d[i]);
if(n==&&d[]>) printf("0\n");
else
{
int sum=,ss=;
for(int i=;i<=n;i++) if(d[i]!=-) sum+=d[i]-,ss++;
else if(d[i]==||d[i]>=n) {printf("0\n");return ;}
if(sum>n-) printf("0\n");
else
{
// for(int i=1;i<=n;i++) if(d[i]!=-1) d[i]--;
for(int i=;i<=n;i++) cnt[i]=;
for(int i=;i<=n-;i++) cal(i,);
for(int i=;i<=n--sum;i++) cal(i,-);
for(int i=;i<=n;i++) if(d[i]!=-)
{
for(int j=;j<=d[i]-;j++) cal(j,-);
}
cal(n-ss,n--sum);
hugeint ans;ans.w[]=;
for(int i=;i<=n;i++) while(cnt[i]--) ans=ans*i;
printf("%d",ans.w[ans.l]);
for(int i=ans.l-;i>=;i--) printf("%04d",ans.w[i]);printf("\n");
}
}
return ;
}

2017-04-25 15:36:48

【BZOJ 1005】 1005: [HNOI2008]明明的烦恼 (prufer数列+高精度)的更多相关文章

  1. BZOJ 1005 [HNOI2008]明明的烦恼 ★(Prufer数列)

    题意 N个点,有些点有度数限制,问这些点可以构成几棵不同的树. 思路 [Prufer数列] Prufer数列是无根树的一种数列.在组合数学中,Prufer数列是由一个对于顶点标过号的树转化来的数列,点 ...

  2. 【bzoj1005】[HNOI2008]明明的烦恼 Prufer序列+高精度

    题目描述 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? 输入 第一行为N(0 < N < = 1000),接下来N行,第i+1行给出第i ...

  3. [bzoj1005][HNOI2008]明明的烦恼-Prufer编码+高精度

    Brief Description 给出标号为1到N的点,以及某些点最终的度数,允许在 任意两点间连线,可产生多少棵度数满足要求的树? Algorithm Design 结论题. 首先可以参考这篇文章 ...

  4. bzoj 1005: [HNOI2008]明明的烦恼 prufer编号&&生成树计数

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2248  Solved: 898[Submit][Statu ...

  5. BZOJ 1005 [HNOI2008]明明的烦恼 (Prufer编码 + 组合数学 + 高精度)

    1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5786  Solved: 2263[Submit][Stat ...

  6. bzoj 1005 [HNOI2008] 明明的烦恼 (prufer编码)

    [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5907  Solved: 2305[Submit][Status][Di ...

  7. 【BZOJ 1005】[HNOI2008]明明的烦恼(暴力化简法)

    [题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1005 [题意] 中文题 [题解] 一棵节点上标有序号的树会和一个prufer数列唯一对 ...

  8. BZOJ.1005.[HNOI2008]明明的烦恼(Prufer 高精 排列组合)

    题目链接 若点数确定那么ans = (n-2)!/[(d1-1)!(d2-1)!...(dn-1)!] 现在把那些不确定的点一起考虑(假设有m个),它们在Prufer序列中总出现数就是left=n-2 ...

  9. 【BZOJ 1005】[HNOI2008]明明的烦恼(化简的另一种方法)

    [题目链接]:http://www.lydsy.com/JudgeOnline/problem.php?id=1005 [题意] [题解] 题目和题解在上一篇; 这里 对 [(m^(n-2-tot)) ...

  10. 【BZOJ 1005】[HNOI2008]明明的烦恼

    Description 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 ...

随机推荐

  1. INF文件详解

    安装信息(Setup Information)文件是Windows系统支持的一种安装信息存放文件,一般以INF作为扩展名,因此也叫INF文件.安装信息INF文件与Windows内建的安装服务引擎(AP ...

  2. SQL记录-PLSQL函数

    PL/SQL函数 PL/SQL函数与过程相同,不同之处在于函数有一个返回值.因此,前面的章节中的所有讨论都适用于函数. 创建函数 建立一个独立函数可以使用CREATE FUNCTION语句创建.CRE ...

  3. spark RDD 常见操作

    fold 操作 区别 与 co 1.mapValus 2.flatMapValues 3.comineByKey 4.foldByKey 5.reduceByKey 6.groupByKey 7.so ...

  4. Web性能优化系列(1):Web性能优化分析

    本文由 伯乐在线 - 鸭梨山大 翻译,sunbiaobiao 校稿.未经许可,禁止转载!英文出处:gokulkrishh.github.io.欢迎加入翻译小组. 如果你的网站在1000ms内加载完成, ...

  5. asp.net C#母版页和内容页事件排版加载顺序生命周期

    asp.net C#母版页和内容页事件排版加载顺序生命周期 关于ASP页面Page_Load发生在事件之前而导致的问题已经喜闻乐见,对于问题的解释也很全面,但是如何解决问题则较少有人说明,我就再 简单 ...

  6. JavaScript编写风格指南 (三)

    七(七):严格模式 // 严格模式应当仅限在函数内部使用,千万不要在全局使用 //不好的写法:全局使用严格模式"user strict"; function doSomething ...

  7. iOS 6 & iOS 7 的适配笔记

    iOS 6 & iOS 7 的适配 场景1: 没有NavigationController,同时根视图是UIView- (void)viewWillLayoutSubviews{ if ([[ ...

  8. 01:MFC应用程序编程

    一 MFC的发展 VC 1.0->VC 5.0->VC 6.0->VC2008 SP1)->VS2010 二 MFC基础 1 MFC 微软基础类库 采用类的方式,将Win32 ...

  9. lemon spj无效编译器解决方法

    反正我是被坑了很久,心里增的敲难过呀! 我曾经无数次的想把它解决掉: 啊啊啊啊啊啊! 什么嘛!什么嘛! 这个空白的框框里到底要填什么嘛!!! 你已经是一个成熟的lemon了,就不能自动识别给个选项吗! ...

  10. 洛谷 P4838 P哥破解密码 题解

    矩阵乘法 + 快速幂优化递推: 看到这个题目我们不难想到递推,题干中说3个连续的A出现在序列中是不合法的,所以可以分为三种情况: (1):序列前只有一个A,如:BA,BBA,BABA. (2):序列前 ...