Tree Cutting

题目连接:

http://acm.hdu.edu.cn/showproblem.php?pid=5909

Description

Byteasar has a tree T with n vertices conveniently labeled with 1,2,...,n. Each vertex of the tree has an integer value vi.

The value of a non-empty tree T is equal to v1⊕v2⊕...⊕vn, where ⊕ denotes bitwise-xor.

Now for every integer k from [0,m), please calculate the number of non-empty subtree of T which value are equal to k.

A subtree of T is a subgraph of T that is also a tree.

Input

The first line of the input contains an integer T(1≤T≤10), denoting the number of test cases.

In each test case, the first line of the input contains two integers n(n≤1000) and m(1≤m≤210), denoting the size of the tree T and the upper-bound of v.

The second line of the input contains n integers v1,v2,v3,...,vn(0≤vi<m), denoting the value of each node.

Each of the following n−1 lines contains two integers ai,bi, denoting an edge between vertices ai and bi(1≤ai,bi≤n).

It is guaranteed that m can be represent as 2k, where k is a non-negative integer.

Output

For each test case, print a line with m integers, the i-th number denotes the number of non-empty subtree of T which value are equal to i.

The answer is huge, so please module 109+7.

Sample Input

2

4 4

2 0 1 3

1 2

1 3

1 4

4 4

0 1 3 1

1 2

1 3

1 4

Sample Output

3 3 2 3

2 4 2 3

Hint

题意

给你一棵树,然后问你,里面有多少个连通块的异或和为j

题解:

树形DP去做,然后我们考虑转移,用fwt去进行优化就好了

至于为什么这么变换的。。。。

俺也不是很清楚:http://picks.logdown.com/posts/179290-fast-walsh-hadamard-transform

代码

#include<bits/stdc++.h>
using namespace std;
const int mod = 1e9+7;
const int inv = (mod+1)/2;
const int maxn = 3005;
int n,m,ans[maxn],val[maxn];
vector<int> E[maxn];
long long dp[maxn][maxn],tmp[maxn],a[maxn],b[maxn];
void fwt(long long *aa,int l,int r)
{
if(r-l==1)return;
int mid=(l+r)/2;
fwt(aa,l,mid);
fwt(aa,mid,r);
int len=mid-l;
for(int i=l;i<mid;i++)
{
long long x1=aa[i];
long long x2=aa[i+len];
aa[i]=(x1+x2)%mod;
aa[i+len]=(x1-x2+mod)%mod;
}
}
void ifwt(long long *aa,int l,int r)
{
if(r-l==1)return;
int mid=(l+r)/2;
int len=mid-l;
for(int i=l;i<mid;i++)
{
long long y1=aa[i];
long long y2=aa[i+len];
aa[i]=(y1+y2)*inv%mod;
aa[i+len]=((y1-y2+mod)%mod*inv)%mod;
}
ifwt(aa,l,mid);
ifwt(aa,mid,r);
}
void solve(long long *aa,long long *bb)
{
memcpy(a,aa,sizeof(long long)*m);
memcpy(b,bb,sizeof(long long)*m);
fwt(a,0,m);
fwt(b,0,m);
memset(tmp,0,sizeof(tmp));
for(int i=0;i<m;i++)
tmp[i]=a[i]*b[i]%mod;
ifwt(tmp,0,m);
}
void dfs(int x,int f)
{
memset(dp[x],0,sizeof(dp[x]));
dp[x][val[x]]=1;
for(int i=0;i<E[x].size();i++){
int v=E[x][i];
if(v==f)continue;
dfs(v,x);
solve(dp[x],dp[v]);
for(int j=0;j<m;j++)(dp[x][j]+=tmp[j])%=mod;
}
for(int i=0;i<m;i++)(ans[i]+=dp[x][i])%=mod;
}
void solve()
{
scanf("%d%d",&n,&m);
for(int i=0;i<m;i++)ans[i]=0;
for(int i=1;i<=n;i++)scanf("%d",&val[i]),E[i].clear();
for(int i=1;i<n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
E[x].push_back(y);
E[y].push_back(x);
}
dfs(1,0);
for(int i=0;i<m;i++)
{
if(i==0)printf("%d",ans[i]);
else printf(" %d",ans[i]);
}
printf("\n");
}
int main()
{
int t;scanf("%d",&t);
while(t--)solve();
return 0;
}

HDU 5909 Tree Cutting 动态规划 快速沃尔什变换的更多相关文章

  1. hdu 5909 Tree Cutting [树形DP fwt]

    hdu 5909 Tree Cutting 题意:一颗无根树,每个点有权值,连通子树的权值为异或和,求异或和为[0,m)的方案数 \(f[i][j]\)表示子树i中经过i的连通子树异或和为j的方案数 ...

  2. HDU 5909 Tree Cutting

    传送门 题意: 有一棵n个点的无根树,节点依次编号为1到n,其中节点i的权值为vi, 定义一棵树的价值为它所有点的权值的异或和. 现在对于每个[0,m)的整数k,请统计有多少T的非空连通子树的价值等于 ...

  3. hdu 5909 Tree Cutting——点分治(树形DP转为序列DP)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5909 点分治的话,每次要做一次树形DP:但时间应该是 siz*m2 的.可以用 FWT 变成 siz*ml ...

  4. HDU 5909 Tree Cutting(FWT+树形DP)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5909 [题目大意] 给出一棵树,其每棵连通子树的价值为其点权的xor和, 问有多少连通子树的价值为 ...

  5. hdu 5909 Tree Cutting —— 点分治

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5909 点分治,每次的 rt 是必选的点: 考虑必须选根的一个连通块,可以DP,决策就是在每个子树中决定选不 ...

  6. HDU.5909.Tree Cutting(树形DP FWT/点分治)

    题目链接 \(Description\) 给定一棵树,每个点有权值,在\([0,m-1]\)之间.求异或和为\(0,1,...,m-1\)的非空连通块各有多少个. \(n\leq 1000,m\leq ...

  7. HDU - 5909 Tree Cutting (树形dp+FWT优化)

    题意:树上每个节点有权值,定义一棵树的权值为所有节点权值异或的值.求一棵树中,连通子树值为[0,m)的个数. 分析: 设\(dp[i][j]\)为根为i,值为j的子树的个数. 则\(dp[i][j\o ...

  8. 【HDU 5909】 Tree Cutting (树形依赖型DP+点分治)

    Tree Cutting Problem Description Byteasar has a tree T with n vertices conveniently labeled with 1,2 ...

  9. HDU-6881 Tree Cutting (HDU多校D10T5 点分治)

    HDU-6881 Tree Cutting 题意 \(n\) 个点的一棵树,要求删除尽量少的点,使得删点之后还是一棵树,并且直径不超过 \(k\),求删除点的数量 分析 补题之前的一些错误想法: 尝试 ...

随机推荐

  1. PHP使用数据库的并发问题

    在并行系统中并发问题永远不可忽视.尽管PHP语言原生没有提供多线程机制,那并不意味着所有的操作都是线程安全的.尤其是在操作诸如订单.支付等业务系统中,更需要注意操作数据库的并发问题. 接下来我通过一个 ...

  2. AngularJs -- 指令中使用子作用域

    下面将要介绍的指令会以父级作用域为原型生成子作用域.这种继承的机制可以创建一个隔离层,用来将需要协同工作的方法和数据模型对象放置在一起. ng-app和ng-controller是特殊的指令,因为它们 ...

  3. SDWebImage源码阅读-第二篇

    一  SDWebImageManager的downloadImageWithURL的方法 上一篇,我们刚开了个头,分析了一下开始加载图片之前如何取消其他正在下载的任务,接着,我们回到 - (void) ...

  4. oracle用户密码过期!the password has expired

    Oracle提示错误消息ORA-28001: the password has expired,是由于Oracle11G的新特性所致, Oracle11G创建用户时缺省密码过期限制是180天(即6个月 ...

  5. Zookeeper笔记之命令行操作

    $ZOOKEEPER_HOME/bin下的zkCli.sh进入命令行界面,使用help可查看支持的所有命令: 一.节点相关操作 create [-s] [-e] path data acl creat ...

  6. 一主多从+Binlog Server,主库故障无法访问,如何在从库中选举一个新主库

    一.基本环境 VMware10.0+CentOS6.9+MySQL5.7.19 ROLE HOSTNAME BASEDIR DATADIR IP PORT M ZST1 /usr/local/mysq ...

  7. linux的内存文件系统tmpfs

    在centos系统上自带的内存文件系统.这个tmpfs是temporary file system的意思. 一. 使用命令 df -h 查看tmpfs是否正在运行. Filesystem Size U ...

  8. blog迁移

    blog迁移到: https://github.com/for-firecat/

  9. nodejs 配置服务自启动

    1安装包 输入以下命令,安装需要的包 npm install node-windows -g 2编写自启动js 在目标server.js目录下新建auto_start_nodejs.js文件,将以下j ...

  10. linux服务器如何添加sudo用户

    1. 编辑 vi /etc/ssh/sshd_config 文件,修改默认端口:默认Port为22,并且已经注释掉了,修改是把注释去掉,并修改成其它的端口. 原来用默认端口:22修改为:8975 (这 ...