ElasticSearch 2 (30) - 信息聚合系列之条形图

摘要

版本

elasticsearch版本: elasticsearch-2.x

内容

聚合还有一个令人激动的特性就是能够十分容易地将它们转换成图表和图形。本章中,我们会关注于各种各样的分析并反复“蹂躏”我们示例中的数据。我们也会展现聚合可以支持的不同种类的图表。

直方图(histogram)桶特别有用,它本质上是一个条形图,如果有创建报表或分析仪表盘的经验,那么我们会毫无疑问的发现里面有一些图表是条形图。直方图是根据指定的间隔显示的,如果需要售价的直方图,我们可能指定的间隔值为 20,000。它会每 $20,000 创建新桶。然后文档会被分到对应的桶中。

对于仪表盘来说,我们希望知道每个售价区间内汽车的销量。我们还会想知道每个售价区间内汽车所带来的收入,可以通过对每个区间内已售汽车的售价求和得到。

可以用 histogram 和一个嵌套的 sum 度量得到我们想要的答案:

  GET /cars/transactions/_search
{
"size" : 0,
"aggs":{
"price":{
"histogram":{ #1
"field": "price",
"interval": 20000
},
"aggs":{
"revenue": {
"sum": { #2
"field" : "price"
}
}
}
}
}
}

#1 histogram 桶要求两个参数:一个数值字段以及一个定义桶大小间隔字段。

#2 sum 度量嵌套在每个售价区间内,用来显示每个区间内的总收入。

如我们所见,查询是围绕 price 聚合构建的,它包含一个 histogram 桶。这个桶要求一个供计算的数值字段,以及一个间隔大小。这个间隔值定义了桶的“宽度”。20000 这个宽度表示我们得到的返回是 [0-19999, 20000-39999, ...]

接着,我们在直方图内定义嵌套的度量,这个 sum 度量会将售价范围内每个文档的售价字段里的值加起来。这可以为我们提供每个售价区间的收入,从而可以发现到底是普通家用车赚钱还是奢侈车赚钱。

响应结果如下:

  {
...
"aggregations": {
"price": {
"buckets": [
{
"key": 0,
"doc_count": 3,
"revenue": {
"value": 37000
}
},
{
"key": 20000,
"doc_count": 4,
"revenue": {
"value": 95000
}
},
{
"key": 80000,
"doc_count": 1,
"revenue": {
"value": 80000
}
}
]
}
}
}

结果很容易理解,不过应该注意到直方图的键值是区间的下限。键 0 代表区间 0-19,999,键 20000 代表区间 20,000-39,999 等等。

注意

我们可能会注意到空的区间,比如:$40,000-60,000,没有出现在响应中。histogram 桶默认会忽略它,因为它有可能会导致不希望的潜在错误输出。

我们会在下一小节中讨论如何包括空桶。返回空桶(Returning Empty Buckets)

可以在图 Figure 35, “Sales and Revenue per price bracket” 中看到以上数据直方图的图形化表示。

Figure 35. Sales and Revenue per price bracket

当然,我们可以为任何聚合输出的分类和统计结果创建条形图,而不只是直方图桶。让我们以最受欢迎 10 种汽车以及它们的平均售价、标准差这些信息创建一个条形图。我们会用到 terms 桶和 extended_stats 度量:

  GET /cars/transactions/_search
{
"size" : 0,
"aggs": {
"makes": {
"terms": {
"field": "make",
"size": 10
},
"aggs": {
"stats": {
"extended_stats": {
"field": "price"
}
}
}
}
}
}

它会按受欢迎度返回制造商列表以及它们各自的统计信息。我们会对 stats.avgstats.countstats.std_deviation 信息特别感兴趣,并用它们计算出标准误差:

std_err = std_deviation / count

创建图表如图 Figure 36, “Average price of all makes, with error bars”.

Figure 36. Average price of all makes, with error bars

参考

elastic.co:

Building Bar Charts

ElasticSearch 2 (30) - 信息聚合系列之条形图的更多相关文章

  1. ElasticSearch 2 (37) - 信息聚合系列之内存与延时

    ElasticSearch 2 (37) - 信息聚合系列之内存与延时 摘要 控制内存使用与延时 版本 elasticsearch版本: elasticsearch-2.x 内容 Fielddata ...

  2. ElasticSearch 2 (38) - 信息聚合系列之结束与思考

    ElasticSearch 2 (38) - 信息聚合系列之结束与思考 摘要 版本 elasticsearch版本: elasticsearch-2.x 内容 本小节涵盖了许多基本理论以及很多深入的技 ...

  3. ElasticSearch 2 (36) - 信息聚合系列之显著项

    ElasticSearch 2 (36) - 信息聚合系列之显著项 摘要 significant_terms(SigTerms)聚合与其他聚合都不相同.目前为止我们看到的所有聚合在本质上都是简单的数学 ...

  4. ElasticSearch 2 (35) - 信息聚合系列之近似聚合

    ElasticSearch 2 (35) - 信息聚合系列之近似聚合 摘要 如果所有的数据都在一台机器上,那么生活会容易许多,CS201 课商教的经典算法就足够应付这些问题.但如果所有的数据都在一台机 ...

  5. ElasticSearch 2 (34) - 信息聚合系列之多值排序

    ElasticSearch 2 (34) - 信息聚合系列之多值排序 摘要 多值桶(terms.histogram 和 date_histogram)动态生成很多桶,Elasticsearch 是如何 ...

  6. ElasticSearch 2 (33) - 信息聚合系列之聚合过滤

    ElasticSearch 2 (33) - 信息聚合系列之聚合过滤 摘要 聚合范围限定还有一个自然的扩展就是过滤.因为聚合是在查询结果范围内操作的,任何可以适用于查询的过滤器也可以应用在聚合上. 版 ...

  7. ElasticSearch 2 (32) - 信息聚合系列之范围限定

    ElasticSearch 2 (32) - 信息聚合系列之范围限定 摘要 到目前为止我们看到的所有聚合的例子都省略了搜索请求,完整的请求就是聚合本身. 聚合与搜索请求同时执行,但是我们需要理解一个新 ...

  8. ElasticSearch 2 (31) - 信息聚合系列之时间处理

    ElasticSearch 2 (31) - 信息聚合系列之时间处理 摘要 如果说搜索是 Elasticsearch 里最受欢迎的功能,那么按时间创建直方图一定排在第二位.为什么需要使用时间直方图? ...

  9. ElasticSearch 2 (29) - 信息聚合系列之测试驱动

    ElasticSearch 2 (29) - 信息聚合系列之测试驱动 摘要 我们可以用以下几页定义不同的聚合和它们的语法,但学习聚合的最佳途径就是用实例来说明.一旦我们获得了聚合的思想,以及如何合理地 ...

随机推荐

  1. Hadoop安装教程【转】

    原贴:http://www.powerxing.com/install-hadoop/ 当开始着手实践 Hadoop 时,安装 Hadoop 往往会成为新手的一道门槛.尽管安装其实很简单,书上有写到, ...

  2. Jenkins Extended E-mail Notification 2个注意事项:

    1.Use SMTP AUTHentication 下 user name 所定义的邮箱,必须和全局配置的管理邮箱一直,否则会报错: Error sending to the following VA ...

  3. C#中XmlSerializer实现序列化浅析

    C# XmlSerializer类是实现序列化的一个类,那么关于C# XmlSerializer的学习我们要掌握怎么样的操作方法呢?那么这里向你详细介绍具体的操作细节情况. C# XmlSeriali ...

  4. ASP.NET Core MVC中的IActionFilter.OnActionExecuting方法,可以获取Controller的Action方法参数值

    用过ASP.NET Core MVC中IActionFilter拦截器的开发人员,都知道这是一个非常强大的MVC拦截器.最近才发现IActionFilter的OnActionExecuting方法,甚 ...

  5. 20155308『网络对抗技术』Exp5 MSF基础应用

    20155308『网络对抗技术』Exp5 MSF基础应用 一.原理与实践说明 实践内容 本实践目标是掌握metasploit的基本应用方式,重点常用的三种攻击方式的思路.具体需要完成: 一个主动攻击实 ...

  6. C++和python的变量对比

    <C++中的this和Python的self对比>基本都是针对函数而言的,从变量的角度看,也有相同之处. C++中,类中定义的变量一般叫做成员变量,或者说是成员属性,它只属于实例对象,只有 ...

  7. python 回溯法 子集树模板 系列 —— 13、最佳作业调度问题

    问题 给定 n 个作业,每一个作业都有两项子任务需要分别在两台机器上完成.每一个作业必须先由机器1 处理,然后由机器2处理. 试设计一个算法找出完成这n个任务的最佳调度,使其机器2完成各作业时间之和达 ...

  8. 华为手机自带浏览器不支持 ES6 语法

    原文地址:https://caochangkui.github.io/huawei-es6/ 华为手机自带浏览器对 es6 语法的支持度极差,哪怕最新的荣耀10 手机也有该毛病!所以,移动端项目开发中 ...

  9. [hdu5503]EarthCup[霍尔定理]

    题意 一共 \(n\) 只球队,两两之间会进行一场比赛,赢得一分输不得分,给出每只球队最后的得分,问能否构造每场比赛的输赢情况使得得分成立.多组数据 \(T\le 10,n\le 5\times 10 ...

  10. SSISDB5:使用TSQL脚本执行Package

    SSISDB 系列随笔汇总: SSISDB1:使用SSISDB管理Package SSISDB2:SSIS工程的操作实例 SSISDB3:Package的执行实例 SSISDB4:当前正在运行的Pac ...