全局最小割StoerWagner算法详解
前言
StoerWagner算法是一个找出无向图全局最小割的算法,本文需要读者有一定的图论基础。
本文大部分内容与词汇来自参考文献(英文,需科学上网),用兴趣的可以去读一下文献。
概念
- 无向图的割:有无向图\(G=(V,E)\),设\(C\)为图\(G\)中一些弧的集合,若从\(G\)中删去\(C\)中的所有弧能使图\(G\)不是连通图,称\(C\)图\(G\)的一个割。
- \(S-T\)割:使得顶点\(S\)与顶点\(T\)不再连通的割,称为\(S-T\)割
- \(S-T\)最小割:包含的弧的权和最小的\(S-T\)割,称为\(S-T\)最小割。
- 全局最小割:包含的弧的权和最小的割,称为全局最小割。
- 诱导割(induced cut):令图\(G=(V, E)\)的一个割为\(C\),则割\(C\)在图\(G\)的子图\(G'=(V',E')\)中的部分称为割\(C\)的诱导割。(类似于概念诱导子图(induced subgraph))
算法流程
大致流程
step1:在图\(G\)中找出任意\(s-t\)最小割cut-of-the-phase
step2:合并\(s\)、\(t\),重复执行step1直到图G只剩下一个顶点
step3:输出最小的cut-of-the-phase为最终结果
伪代码:
def MinimumCutPhase(G, w, a):
A ← {a}
while A ≠ V:
把与A联系最紧密(most tightly)的顶点加入A中
cut-of-the-phase ← w(A \ t, t)
合并最后两个加入到A的顶点s、t
return cut-of-the-phase
def StoerWagner(G, w, a):
while |V| > 1
MinimumCutPhase(G, w, a)
根据返回值更新最小割
其中:
- \(w\)为边权函数,\(w(e)\)为边\(e\)的权值大小
- \(w(A, v)\)为顶点\(v\)到集合\(A\)的所有边权和
- \(x\)与\(A\)联系最紧密(most tightly)当且仅当\(x \notin A\)且\(w(A,x) = max\{w(A, y) | y \notin A\}\)
- \(a\)可以取任意顶点作为算法的初始顶点
证明
首先,算法基于这样一个事实:
两个顶点s、t,要么在全局最小割的同一个集合中,要么在不同的集合中
那么结果便只可能在是\(s-t\)最小割,或者合并\(s\)、\(t\)的新图的全局最小割。
然后问题就在于如何寻找任意的\(s-t\)最小割。现在来证明MinimumCutPhase找出来的\(s-t\)割cut-of-the-phase为什么是最小的。
定理:每个阶段割(cut-of-the-phase)是当前图的\(s-t\)最小割,\(s\)、\(t\)是当前阶段最后加入的结点。

证明:
以加入集合\(A\)的顺序组成一个序列,以\(a\)为开始,以\(s\)、\(t\)结束。然后来证明对于任意\(s-t\)割\(C\)均不小于阶段割(cut-of-the-phase)
我们称结点\(v\)(\(v \neq a\))是活跃的(active)当\(v\)和\(v\)的前一个结点分立于C的两边。令\(w(C)\)为割C的大小,\(A_v\)为所有在\(v\)前面的顶点(不包括\(v\)),\(C_v\)为\(A_v \bigcup \{v\}\)的\(C\)割,\(w(C_v)\)为诱导割\(C_v\)的大小。
那么,对于所有活跃的顶点v,有
\]
归纳证明:
对于第一个活跃顶点\(v_0\),该不等式以等号成立。这是由于\(v_0\)前面的点都非活跃点,那么它们都在割C的同一侧,另一侧为\(v_0\),显然有\(w(A_{v_0},v_0) = w(C_{v_0})\)。
假设对于活跃顶点\(v\),\(v\)满足不等式。令\(u\)为\(v\)的下一个活跃顶点,那么我们令:
\]
由于\(v\)加入\(A\)比\(u\)早,所以有\(w(A_v,u) \leq w(A_v,v)\)。又因\(v\)满足不等式,所以有
\]
由于所有 \(A_u \setminus A_v\) 与\(u\)之间的边均跨过割\(C_u\),且不是\(C_v\)的一部分,于是有
\]
联立上式,得到:
\]
于是对于任意活跃顶点,均满足不等式\((1)\)。
由于\(t\)总是活跃顶点(\(s-t\)割导致\(s\)与\(t\)总被割开),则\(t\)总是满足不等式\(w(A_t,t) \leq
w(C_t)\),即任意割小于等于\(w(A_t,t)\)。又因为\(w(A_t,t)\)为单独割掉顶点\(t\)的大小(链接\(t\)的所有边权和),所以有\(w(A_t,t)\)为\(s-t\)最小割。证得MinimumCutPhase找出来的\(s-t\)割是\(s-t\)最小割。
例题
HDU 3691 Nubulsa Expo(全局最小割Stoer-Wagner算法)
HDU 6081 度度熊的王国战略(全局最小割Stoer-Wagner算法)
参考文献
stoerwagner-mincut.[Stoer-Wagner,Prim,连通性,无向图,最小边割集]
全局最小割StoerWagner算法详解的更多相关文章
- HDU 3691 Nubulsa Expo(全局最小割Stoer-Wagner算法)
Problem Description You may not hear about Nubulsa, an island country on the Pacific Ocean. Nubulsa ...
- HDU 6081 度度熊的王国战略(全局最小割Stoer-Wagner算法)
Problem Description 度度熊国王率领着喵哈哈族的勇士,准备进攻哗啦啦族. 哗啦啦族是一个强悍的民族,里面有充满智慧的谋士,拥有无穷力量的战士. 所以这一场战争,将会十分艰难. 为了更 ...
- 全局最小割Stoer-Wagner算法
借鉴:http://blog.kongfy.com/2015/02/kargermincut/ 提到无向图的最小割问题,首先想到的就是Ford-Fulkerson算法解s-t最小割,通过Edmonds ...
- SW算法求全局最小割(Stoer-Wagner算法)
我找到的唯一能看懂的题解:[ZZ]最小割集Stoer-Wagner算法 似乎是一个冷门算法,连oi-wiki上都没有,不过洛谷上竟然有它的模板题,并且2017百度之星的资格赛还考到了.于是来学习一下. ...
- POJ 2914:Minimum Cut(全局最小割Stoer-Wagner算法)
http://poj.org/problem?id=2914 题意:给出n个点m条边,可能有重边,问全局的最小割是多少. 思路:一开始以为用最大流算法跑一下,然后就超时了.后来学习了一下这个算法,是个 ...
- poj 2914&&hdu 3002 全局最小割Stoer-Wagner算法模板
#include<stdio.h> #include<string.h> #include<iostream> #define inf 0x3fffffff #de ...
- [全局最小割][Stoer-Wagner 算法] 无向图最小割
带有图片例子的 [BLOG] 复杂度是$(n ^ 3)$ HDU3691 // #pragma GCC optimize(2) // #pragma GCC optimize(3) // #pragm ...
- 最小割Stoer-Wagner算法
最小割Stoer-Wagner算法 割:在一个图G(V,E)中V是点集,E是边集.在E中去掉一个边集C使得G(V,E-C)不连通,C就是图G(V,E)的一个割: 最小割:在G(V,E)的所有割中,边权 ...
- 无向图最小割Stoer-Wagner算法学习
无向连通网络,去掉一个边集可以使其变成两个连通分量则这个边集就是割集,最小割集当然就权和最小的割集. 使用最小切割最大流定理: 1.min=MAXINT,确定一个源点 2.枚举汇点 3.计算最大流,并 ...
随机推荐
- Hash Tables
哈希表 红黑树实现的符号表可以保证对数级别的性能,但我们可以做得更好.哈希表实现的符号表提供了新的数据访问方式,插入和搜索操作可以在常数时间内完成(不支持和顺序有关的操作).所以,在很多情况下的简单符 ...
- Ubuntu集群 配置ntp服务
1.概述 NTP(Network Time Protocol)是用来使计算机时间同步化的一种协议,它可以使计算机对其服务器或时钟源(如石英钟,GPS等等)做同步化,它可以提供高精准度的时间校正(LAN ...
- js 毫秒转换为标准时间
function dateForm(time){ var unixTimestamp = new Date( 1477386005*1000 ); commonTime = unixTimestamp ...
- input file 美化
<input type='file'>的默认外观实在难看,绝大多数情况都需要对其美化.找了很多资料,目前发现以下方式是最简单的美化方式. 1.将file input用label包裹起来,然 ...
- Android学习之——自己搭建Http框架(1)
一.前言 近期学习http框架. 眼下写的这个框架临时仅仅适用于学习之用,实际用于项目之中还须要不断的优化. 要从server或者网络获取数据.显示到U ...
- 使用Winform程序作为WCF服务的宿主
如果我们自己新建一个WCF服务库,生成了dll文件.那我们需要创建一个宿主程序,在本例中我们新建一个Winform程序作为WCF的宿主程序. 在网上很多教程里对创建过程写的很模糊,错误也很多.本文是作 ...
- docker中使用的镜像加速器可以自己生成
只要你到该网址https://cr.console.aliyun.com/cn-hangzhou/mirrors登录(我使用的是支付宝帐号),然后你如下图操作,就能够看见你的加速器地址了,只要你登录就 ...
- android 解决小米手机上选择照片路径为null情况
昨天测试帅哥说他手机选择图库崩溃了,这是一个上传头像的功能,相信很多应用都有这个功能,于是我就把手机拿过来打log看了下返回的路径 为null,在网上搜索了下解决方案,现在把解决方案记录下: 这是在o ...
- [转]VS 2012环境下使用MFC进行OpenGL编程
我就不黏贴复制了,直接给出原文链接:VS 2012环境下使用MFC进行OpenGL编程 其它好文链接: 1.OpenGL系列教程之十二:OpenGL Windows图形界面应用程序
- OpenCV——ORB特征检测与匹配
原文链接:https://mp.weixin.qq.com/s/S4b1OGjRWX1kktefyHAo8A #include <opencv2/opencv.hpp> #include ...