http://poj.org/problem?id=3683

2-sat 问题判定,输出一组可行解

http://www.cnblogs.com/TheRoadToTheGold/p/8436948.html

注:

本代码在判断两个时间段部分有误,数据弱A了

#include<cstdio>
#include<vector> using namespace std; #define N 1001 struct TIME
{
int h1,m1;
int h2,m2;
int tim;
}e[N]; int n;
int tot; int front[N<<],to[N*N*],nxt[N*N*]; int dfn[N<<],low[N<<];
int st[N<<],top;
bool vis[N<<]; int cnt;
int id[N<<];
vector<int>V[N<<]; int FRONT[N<<],TO[N*N*],NXT[N*N*],TOT;
int in[N<<]; bool use[N<<],cut[N<<]; struct ANS
{
int h1,m1;
int h2,m2;
}ans[N]; void add(int u,int v)
{
to[++tot]=v; nxt[tot]=front[u]; front[u]=tot;
} void ADD(int u,int v)
{
TO[++TOT]=v; NXT[TOT]=FRONT[u]; FRONT[u]=TOT;
in[v]++;
} bool judge(int h1s,int m1s,int h1t,int m1t,int h2s,int m2s,int h2t,int m2t)
{
int s1=(h1s-)*+m1s;
int t1=(h1t-)*+m1t;
int s2=(h2s-)*+m2s;
int t2=(h2t-)*+m2t;
if(s1<=s2)
{
if(s2>=t1) return false;
return true;
}
else
{
if(t2<=s1) return false;
return true;
}
} void tarjan(int u)
{
dfn[u]=low[u]=++tot;
st[++top]=u;
vis[u]=true;
for(int i=front[u];i;i=nxt[i])
{
if(!dfn[to[i]])
{
tarjan(to[i]);
low[u]=min(low[u],low[to[i]]);
}
else if(vis[to[i]]) low[u]=min(low[u],dfn[to[i]]);
}
if(dfn[u]==low[u])
{
cnt++;
while(st[top]!=u)
{
id[st[top]]=cnt;
vis[st[top]]=false;
V[cnt].push_back(st[top--]);
}
id[u]=cnt;
vis[u]=false;
V[cnt].push_back(u);
top--;
}
} void rebuild()
{
for(int k=;k<=n;++k)
{
int i=k<<;
for(int j=front[i];j;j=nxt[j])
if(id[i]!=id[to[j]]) ADD(id[to[j]],id[i]);
i=k<<|;
for(int j=front[i];j;j=nxt[j])
if(id[i]!=id[to[j]]) ADD(id[to[j]],id[i]);
}
} void out(int h,int m)
{
if(m> && m<) printf("%02d:%02d",h,m);
else if(m<)
{
if(!(m%))
{
h+=m/;
printf("%02d:00",h);
}
else
{
h+=m/;
h--;
m%=;
if(m<) m+=;
printf("%02d:%02d",h,m);
}
}
else
{
h+=m/;
m%=;
printf("%02d:%02d",h,m);
}
} void topsort()
{
for(int i=;i<=cnt;++i)
if(!in[i]) st[++top]=i;
int u,v;
while(top)
{
u=st[top--];
if(cut[u]) continue;
use[u]=true;
v=id[V[u][]^];
cut[v]=true;
for(int i=FRONT[u];i;i=NXT[i])
{
in[TO[i]]--;
if(!in[TO[i]]) st[++top]=TO[i];
}
//for(int i=FRONT[v];i;i=NXT[i]) cut[TO[i]]=true;
}
for(int i=;i<=n;++i)
if(use[id[i<<]])
{
ans[i].h1=e[i].h1;
ans[i].m1=e[i].m1;
ans[i].h2=e[i].h1;
ans[i].m2=e[i].m1+e[i].tim;
}
else
{
ans[i].h1=e[i].h2;
ans[i].m1=e[i].m2-e[i].tim;
ans[i].h2=e[i].h2;
ans[i].m2=e[i].m2;
}
puts("YES");
for(int i=;i<=n;++i)
{
out(ans[i].h1,ans[i].m1);
putchar(' ');
out(ans[i].h2,ans[i].m2);
putchar('\n');
}
} int main()
{
scanf("%d",&n);
for(int i=;i<=n;++i)
{
scanf("%d:%d",&e[i].h1,&e[i].m1);
scanf("%d:%d",&e[i].h2,&e[i].m2);
scanf("%d",&e[i].tim);
}
for(int i=;i<n;++i)
for(int j=i+;j<=n;++j)
if(i!=j)
{
if(judge(e[i].h1,e[i].m1,e[i].h1,e[i].m1+e[i].tim,e[j].h1,e[j].m1,e[j].h1,e[j].m1+e[j].tim))
add(i<<,j<<|),add(j<<,i<<|);
if(judge(e[i].h1,e[i].m1,e[i].h1,e[i].m1+e[i].tim,e[j].h2,e[j].m2-e[j].tim,e[j].h2,e[j].m2))
add(i<<,j<<),add(j<<|,i<<|);
if(judge(e[i].h2,e[i].m2-e[i].tim,e[i].h2,e[i].m2,e[j].h1,e[j].m1,e[j].h1,e[j].m1+e[j].tim))
add(i<<|,j<<|),add(j<<,i<<);
if(judge(e[i].h2,e[i].m2-e[i].tim,e[i].h2,e[i].m2,e[j].h2,e[j].m2-e[j].tim,e[j].h2,e[j].m2))
add(i<<|,j<<),add(j<<|,i<<);
}
tot=;
for(int i=;i<=n;++i)
{
if(!dfn[i<<]) tarjan(i<<);
if(!dfn[i<<|]) tarjan(i<<|);
}
for(int i=;i<=n;++i)
if(id[i<<]==id[i<<|])
{
puts("NO");
return ;
}
rebuild();
topsort();
}
Priest John's Busiest Day
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 11007   Accepted: 3759   Special Judge

Description

John is the only priest in his town. September 1st is the John's busiest day in a year because there is an old legend in the town that the couple who get married on that day will be forever blessed by the God of Love. This year N couples plan to get married on the blessed day. The i-th couple plan to hold their wedding from time Si to time Ti. According to the traditions in the town, there must be a special ceremony on which the couple stand before the priest and accept blessings. The i-th couple need Di minutes to finish this ceremony. Moreover, this ceremony must be either at the beginning or the ending of the wedding (i.e. it must be either from Si to Si + Di, or from Ti - Di to Ti). Could you tell John how to arrange his schedule so that he can present at every special ceremonies of the weddings.

Note that John can not be present at two weddings simultaneously.

Input

The first line contains a integer N ( 1 ≤ N ≤ 1000). 
The next N lines contain the SiTi and DiSi and Ti are in the format of hh:mm.

Output

The first line of output contains "YES" or "NO" indicating whether John can be present at every special ceremony. If it is "YES", output another N lines describing the staring time and finishing time of all the ceremonies.

Sample Input

2
08:00 09:00 30
08:15 09:00 20

Sample Output

YES
08:00 08:30
08:40 09:00

Source

poj 3686 Priest John's Busiest Day的更多相关文章

  1. POJ 3683 Priest John's Busiest Day / OpenJ_Bailian 3788 Priest John's Busiest Day(2-sat问题)

    POJ 3683 Priest John's Busiest Day / OpenJ_Bailian 3788 Priest John's Busiest Day(2-sat问题) Descripti ...

  2. POJ 3683 Priest John's Busiest Day (2-SAT)

    Priest John's Busiest Day Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6900   Accept ...

  3. POJ 3683 Priest John's Busiest Day(2-SAT+方案输出)

    Priest John's Busiest Day Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10010   Accep ...

  4. POJ 3683 Priest John's Busiest Day(2-SAT 并输出解)

    Description John is the only priest in his town. September 1st is the John's busiest day in a year b ...

  5. poj - 3683 - Priest John's Busiest Day(2-SAT)

    题意:有N场婚礼,每场婚礼的开始时间为Si,结束时间为Ti,每场婚礼有个仪式,历时Di,这个仪式要么在Si时刻开始,要么在Ti-Di时刻开始,问能否安排每场婚礼举行仪式的时间,使主持人John能参加所 ...

  6. POJ 3683 Priest John's Busiest Day (2-SAT)

    题意:有n对新人要在同一天结婚.结婚时间为Ti到Di,这里有时长为Si的一个仪式需要神父出席.神父可以在Ti-(Ti+Si)这段时间出席也可以在(Di-Si)-Si这段时间.问神父能否出席所有仪式,如 ...

  7. POJ 3683 Priest John's Busiest Day (2-SAT,常规)

    题意: 一些人要在同一天进行婚礼,但是牧师只有1个,每一对夫妻都有一个时间范围[s , e]可供牧师选择,且起码要m分钟才主持完毕,但是要么就在 s 就开始,要么就主持到刚好 e 结束.因为人数太多了 ...

  8. POJ 3683 Priest John's Busiest Day

    2-SAT简单题,判断一下两个开区间是否相交 #include<cstdio> #include<cstring> #include<cmath> #include ...

  9. POJ 3683 Priest John's Busiest Day[2-SAT 构造解]

    题意: $n$对$couple$举行仪式,有两个时间段可以选择,问是否可以不冲突举行完,并求方案 两个时间段选择对应一真一假,对于有时间段冲突冲突的两人按照$2-SAT$的规则连边(把不冲突的时间段连 ...

随机推荐

  1. GitHub 新手教程 二,Windows 版 GitHub 安装

    1,下载地址: https://git-scm.com/download/ 2,信息: 3,选择安装位置: 例如:d:\soft\git 4,选择组件: 5,创建开始菜单: 6,选择Git使用的默认编 ...

  2. process.tar.gz

    exec1.c #include <stdio.h> #include <unistd.h> int main() { char *arglist[3]; arglist[0] ...

  3. 团队作业(五)-笔记app top5

    在互联网快速发展的情况下,各个行业的软件层出不穷,五花八门.各个行业都有相当多的软件介入其中,在如此多的软件之中,便有了相当激烈的竞争角逐.今天我们十五万的总冠军就着笔记APP行业中位列top 5的软 ...

  4. 软件工程作业 - Week 1

    构建之法读后疑问: 初步的完成构建程序设计思路之后实现过程中发现了问题或者可以优化的地方是立马就改进还是完成之后按照步骤统一进行优化. 覆盖性测试,针对一些永远用不到只是用来预防极为极端的情况下,例如 ...

  5. psp进度统计

    每周例行报告 本周PSP 类别 任务 开始时间 结束时间 被打断时间 总计工作时间    11月8日 代码 参与团队项目 10:13 11:30 0 77min 写博客 词频统计总结 13:35 14 ...

  6. FINAL视频预发布

    视频地址:http://v.youku.com/v_show/id_XMTg0MjMzNDIwNA==.html?spm=a2hzp.8253869.0.0&from=y1.7-2

  7. 第十二周(12.01-12.04)----final评论I

    1.  约跑App——nice!:作为final发布讲说的第一组,nice团队很不容易.虽然很早就来到了发布场地,为发布做准备.但是准备上还是有些不足.对于摄像头的不稳定,nice没有很好的解决.在演 ...

  8. Windows10 版本说明 From wiki 20190104

    Windows版本说明 文字版本的: PC版本历史[编辑] 索引:       旧版本       旧版本,受支援       最新版本       最新预览版本 Version 1507(Windo ...

  9. [转帖]技术盛宴 | 关于PoE以太网供电技术详解

    技术盛宴 | 关于PoE以太网供电技术详解 https://smb.pconline.com.cn/1208/12085824.html   [PConline 干货铺]随着物联网技术飞速发展,需要提 ...

  10. [转帖] 一文看懂:"边缘计算"究竟是什么?为何潜力无限?

    一文看懂:"边缘计算"究竟是什么?为何潜力无限? 转载cnbeta   云计算 雾计算 边缘计算...   知名创投调研机构CB Insights撰文详述了边缘计算的发展和应用前景 ...