题解

我不会打表找规律啊QAQ

规律就是

对于\(n = m\)我们每一条左下到右上的对角线上的点的走法都是一样的且每n步一个轮重复

对于\(n != m\)我们找到最大公约数\(d\),在每个\(d * d\)的方格里满足左上到右下的对角线点的走法一样且d轮一个重复

然后枚举\(dx\),\(dy = d - dx\),我们要满足\(gcd(n,dx) == 1\)且\(gcd(m,dy) == 1\)这时是一个合法路径

显然有一些点是必须要经过的,我们把这些点遍历一遍,同时算出\(fir[i][j]\)表示向下走i和向右走j最早第几次走到障碍

然后我们进行一下dp,就是对于一个点\(i,j\),要它恰好第k轮撞到障碍物的话,我们需要到达\((i,j)\)之前的点轮数都大于\(k\),之后的点都大于等于\(k\)

然后对于每个\(fir[i][j] == k\)的点统计一下就好了

代码

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pdi pair<db,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define MAXN 205
#define eps 1e-8
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
const int MOD = 998244353;
int T,N,M,fir[55][55],f[55][55],g[55][55];
char s[55][55];
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
int gcd(int a,int b) {
return b == 0 ? a : gcd(b,a % b);
}
void Init() {
read(N);read(M);
for(int i = 0 ; i < N ; ++i) scanf("%s",s[i]);
}
void Solve() {
int d = gcd(N,M);
int ans = 0;
for(int dx = 1 ; dx < d ; ++dx) {
int dy = d - dx;
if(gcd(N,dx) == 1 && gcd(M,dy) == 1) {
memset(fir,1,sizeof(fir));
int sx = 0,sy = 0,t = 1;
while(1) {
for(int i = 0 ; i <= dx ; ++i) {
for(int j = 0 ; j <= dy ; ++j) {
if(s[(sx + i) % N][(sy + j) % M] == '1') fir[i][j] = min(fir[i][j],t);
}
}
++t;
sx = (sx + dx) % N;
sy = (sy + dy) % M;
if(sx == 0 && sy == 0) break;
}
for(int k = 1 ; k <= (N * M) / d ; ++k) {
memset(f,0,sizeof(f));memset(g,0,sizeof(g));
f[0][0] = 1;g[dx][dy] = 1;
for(int i = 0 ; i <= dx ; ++i) {
for(int j = 0 ; j <= dy ; ++j) {
if(i && fir[i - 1][j] > k) f[i][j] = inc(f[i][j],f[i - 1][j]);
if(j && fir[i][j - 1] > k) f[i][j] = inc(f[i][j],f[i][j - 1]);
}
}
for(int i = dx ; i >= 0 ; --i) {
for(int j = dy ; j >= 0 ; --j) {
if(i <= dx && fir[i + 1][j] >= k) g[i][j] = inc(g[i][j],g[i + 1][j]);
if(j <= dy && fir[i][j + 1] >= k) g[i][j] = inc(g[i][j],g[i][j + 1]);
}
}
for(int i = 0 ; i <= dx ; ++i) {
for(int j = 0 ; j <= dy ; ++j) {
if(i + j && fir[i][j] == k) {
ans = inc(ans,mul(mul(f[i][j],g[i][j]),i + j + (k - 1) * d));
}
}
}
}
}
}
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
read(T);
while(T--) {
Init();
Solve();
}
}

【LOJ】#2550. 「JSOI2018」机器人的更多相关文章

  1. LOJ 2550 「JSOI2018」机器人——找规律+DP

    题目:https://loj.ac/problem/2550 只会写20分的搜索…… #include<cstdio> #include<cstring> #include&l ...

  2. LOJ 2548 「JSOI2018」绝地反击 ——二分图匹配+网络流手动退流

    题目:https://loj.ac/problem/2548 如果知道正多边形的顶点,就是二分答案.二分图匹配.于是写了个暴力枚举多边形顶点的,还很愚蠢地把第一个顶点枚举到 2*pi ,其实只要 \( ...

  3. LOJ 2551 「JSOI2018」列队——主席树+二分

    题目:https://loj.ac/problem/2551 答案是排序后依次走到 K ~ K+r-l . 想维护一个区间排序后的结果,使得可以在上面二分.求和:二分可以知道贡献是正还是负. 于是想用 ...

  4. LOJ 2547 「JSOI2018」防御网络——思路+环DP

    题目:https://loj.ac/problem/2547 一条树边 cr->v 会被计算 ( n-siz[v] ) * siz[v] 次.一条环边会被计算几次呢?于是去写了斯坦纳树. #in ...

  5. LOJ 2546 「JSOI2018」潜入行动——树形DP

    题目:https://loj.ac/problem/2546 dp[ i ][ j ][ 0/1 ][ 0/1 ] 表示 i 子树,用 j 个点,是否用 i , i 是否被覆盖. 注意 s1<= ...

  6. @loj - 3157@「NOI2019」机器人

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 小 R 喜欢研究机器人. 最近,小 R 新研制出了两种机器人,分 ...

  7. 「JSOI2018」机器人

    在本题当中为了方便,我们将坐标范围改至 \((0 \sim n - 1, 0 \sim m - 1)\),行走即可视作任意一维在模意义下 \(+1\). 同时,注意到一个位置只能经过一次,则可以令 \ ...

  8. Loj #2192. 「SHOI2014」概率充电器

    Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...

  9. Loj #3096. 「SNOI2019」数论

    Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...

随机推荐

  1. Kakfa的设计思想

    Kafka Kafka是最初由Linkedin公司开发,是一个分布式.支持分区的(partition).多副本的(replica),基于zookeeper协调的分布式消息系统,它的最大的特性就是可以实 ...

  2. BZOJ 4004: [JLOI2015]装备购买

    4004: [JLOI2015]装备购买 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1154  Solved: 376[Submit][Statu ...

  3. 【BZOJ1025】[SCOI2009]游戏(动态规划)

    [BZOJ1025][SCOI2009]游戏(动态规划) 题面 BZOJ 洛谷 题解 显然就是一个个的置换,那么所谓的行数就是所有循环的大小的\(lcm+1\). 问题等价于把\(n\)拆分成若干个数 ...

  4. (转)关于Class.getResource和ClassLoader.getResource的路径问题

    Java中取资源时,经常用到Class.getResource和ClassLoader.getResource,这里来看看他们在取资源文件时候的路径问题. 1 Class.getResource(St ...

  5. Java 动态代理模式浅析

    目录 Java代理设计模式 - 静态代理 静态代理的优点 静态代理的缺点 Java中的动态代理 - 调用处理器 主要笔记: 动态代理类的限制 代理设计模式的UML图: 我将首先介绍Java中的各种代理 ...

  6. John:How JavaScript Timers Work

    John大神的bolg链接:http://ejohn.org/blog/how-javascript-timers-work/ JavaScript中的定时器经常表现的跟我们想象的不同,我们用三个函数 ...

  7. sublime代码对齐

    来源于:Sublime 自动缩进怎么设置? - 郭缔的回答 - 知乎 https://www.zhihu.com/question/22987174/answer/90874465 { "k ...

  8. [六字真言]5.咪.功力不足,学习前端JavaScript异常

    A Guide to Proper Error Handling in JavaScript 这是关于JavaScript中异常处理的故事.如果你相信 墨菲定律 ,那么任何事情都可能出错,不,一定会出 ...

  9. spring注解 @Scheduled(cron = "0 0 1 * * *")实现定时的执行任务

    @Scheduled(cron = "0 0 1 * * *") 在使用该注解以前请做好以下准备工作,配置好相应的xm文件. 配置定时注解的步骤:http://blog.csdn. ...

  10. hdu 5181 numbers

    http://acm.hdu.edu.cn/showproblem.php?pid=5181 题意: 有一个栈,其中有n个数1~n按顺序依次进入栈顶,在某个时刻弹出. 其中m个限制,形如数字A必须在数 ...