多校A层冲刺NOIP2024模拟赛20
多校A层冲刺NOIP2024模拟赛20
昨天晚上打 ABC 了,所以今天才发。
T1 星际联邦
直接上 菠萝(Borůvka)算法就行了,当然还可以用线段树优化 prim算法,但是没打过只是口胡:就是维护当前的连通块,但一个点 $ i $ 加入连通块时,后面那些点就可以有 $ a_j - a_i $ 的贡献,前面的点可以有 $ a_i - a_j $ 的贡献,然后区间修改,同时自己不可以再被选,单点修改自己为 inf ,然后全局查询即可。
QED 赛时发明了一种 $ o(n) $ 做法,经证明是正确的,不会,run了。
T2 和平精英
\]
赛时能想到按值域去枚举,是 $ O(qn^2) $ 的,因为从值域上去枚举最后两者的答案是 $ v $ 的话, $ \gt v $ 的只能给 & , $ \lt v $ 的只能给 | , $ = v $ 的需要分讨一下:如果超过两个的话那就两边各一个,如果只有一个的话,那就分别给两边看看哪种可以。
然后其中一个 $ n $ 是因为我们要枚举求那些数 & 的和,和 | 的和,但是这可以直接用线段树优化到 $ log(n) $ ,于是有了 $ O(qnlog(n)) $ 的做法。
我们之所以枚举值域是因为他在 值 上满足 越 & 越小,越 | 越大。其实这个性质在 popcount 上也满足,所以我们直接枚举 popcount 是 v , 但是这个时候 $ = v $ 的情况又有点麻烦,因为我不确定他的值到底是多少,但是你发现如果他们的值不同的话,不管给谁他们最后的值一定不相同,所以特判相同之后继续上面的分讨即可。还有一个就是两个党派必须都有人,这也有点麻烦,但是就是多点细节的事。时间复杂度 $ o(nlog^2(n)) $
T3 摆烂合唱
每相邻的两个数进行一次运算之后会合并成一个数,那么让合并之后的这个数是原来两个数的 fa,然后最后一定会合并成一个数,对于最后这个数我们直到他的答案,然后我们树上DP就行。

如果我们此时知道了 $ fa $ 的所有信息,那我们如何得知 $ x $ 的答案?
先假设 $ y = 1 $
如果 $ x $ 不管选什么 $ fa $ 都 = 1/0 的话,那么 $ x $ 选择不同导致最后答案不同的概率 就会加上 $ fa $ 是 1/0 时最终答案不同的概率 $ \times $ y = 1 的概率。否则就会加上 $ fa $ 不同时的概率 $ \times $ y=1 的概率。
那么其他情况同理,我们只需要维护 $ ans_0 $ 表示 $ x $ 为 0 时答案不同的概率, $ ans_1 $ 表示 $ x $ 为 1 时答案不同的概率, $ ans_2 $ 表示 $ x $ 不同时答案不同的概率(也是最后要求的答案),然后从下到上算一个数为 0/1 的概率,再从上到下DP算答案即可。
T4 对称旅行者
这个题解讲的其实挺清楚的,所以以解释题解为主:
题解:
考虑先求旅行者 \(i\) 的期望位置,设为 \(f_i\),那么答案就为 \(f_i * 2^{m K}\)。
当旅行者 \(i\) 旅行时时,由于期望的线性性,\(f_i \longleftarrow \frac{1}{2}\left(2 f_{i-1}-f_i+2 f_{i+1}-f_i\right)=f_{i-1}+f_{i+1}-f_i\),考虑其几何含义,发现是把 \(f_i\) 关于 \(f_{i-1}\) 和 \(f_{i+1}\) 的中点对称,如果设 \(g_i=f_{i+1}-f_i\),那么跳第 \(i\) 枚棋子相当于交换 \(g_{i-1}\) 和 \(g_i\)。
因此一轮旅行就对应一个 \(1 \sim n-1\) 的置换,用类似快速幂的方法就可以求出 \(K\) 轮旅行后的 \(\left\{g_i\right\}\),再注意到 \(f_1\) 始终不变,就可以求出所有棋子的期望位置,时间复杂度为 \(O(n \log K)\)。
[==============]
首先 $ x $ 关于 $ y $ 对称后的位置可以写成 $ y*2-x $ ,所以第一个式子很好理解,然后就是后面的几何意义,我们把 $ f_{i-1} + f_{i+1} $ 看成 $ \frac{ f_{i-1} + f_{i+1} }{2} \times 2 $ ,所以这和对称的那个式子一样,然后就可以知道题解说的关于 $ f_{i-1} $ 和 $ f_{i+1} $ 的中点对称。

然后感性认为那个 $ g $ 就是正的,所以 $ g_i $ 表示 $ i $ 和 $ i+1 $ 之间的距离,所以 $ i $ 关于 $ i-1 , i+1 $ 中点对称时,就是交换了两者之间的距离,然后再感性理解一下 $ g $ 是负的也成立。
所以成了置换环,快速幂即可求出最后的 $ g $ 数组,然后从数据范围中得知 $ f_1 $ 不变,所以可以算出最后的 $ f $ 数组,然后 $ ans_i = f_i \times 2^{km} $ 。
多校A层冲刺NOIP2024模拟赛20的更多相关文章
- 多校B层冲刺NOIP20211111模拟12
题面:PDFhttp://xn--gwt928b.accoders.com/pdf/10248/10248.pdfhttp://xn--gwt928b.accoders.com/pdf/10248/1 ...
- 【CJOJ P1957】【NOIP2010冲刺十模拟赛】数字积木
[NOIP2010冲刺十模拟赛]数字积木 Description 小明有一款新式积木,每个积木上都有一个数,一天小明突发奇想,要是把所有的积木排成一排,所形成的数目最大是多少呢? 你的任务就是读入n个 ...
- 冲刺Noip2017模拟赛7 解题报告——五十岚芒果酱
1.二叉树(binary) .二叉树 (binary.cpp/c/pas) [问题描述] 二叉排序树或者是一棵空树,或者是具有下列性质的二叉树: ()若左子树不空,则左子树上所有结点的值均小于它的根结 ...
- 冲刺Noip2017模拟赛8 解题报告——五十岚芒果酱
1.鼎纹 [问题描述] 据说鼎纹的 种制造 式是 铜模印出来的,这是我国古代劳动 智慧 的结晶.铜模印过的地 ,会留下深深的印记,经过时间的炼化,洗 练成历史的遗存. 聪明的古代劳动人民拥有一个 a ...
- 冲刺Noip2017模拟赛4 解题报告——五十岚芒果酱
题1 韬韬抢苹果(apple) [问题描述] 又到了收获的季节,树上结了许多韬韬,错了,是许多苹果,有很多个小韬韬都来摘苹 果.每个韬韬都想要最大的苹果,所以发生了争执,为了解决他们的矛盾,出题人定了 ...
- 冲刺Noip2017模拟赛2 解题报告——五十岚芒果酱
题1 牛跑步(running) [题目描述] 新牛到部队,CG 要求它们每天早上搞晨跑,从 A 农场跑到 B 农场.从 A 农场到 B 农场中有 n- 个路口,分别标上号,A 农场为 号,B 农场为 ...
- 冲刺Noip2017模拟赛1 解题报告——五十岚芒果酱
题1 国际象棋(chess) [问题描述] 有N个人要参加国际象棋比赛,该比赛要进行K场对弈.每个人最多参加2场对弈,最少参加0场对弈.每个人都有一个与其他人都不相同的等级(用一个正整数来表示).在对 ...
- 冲刺Noip2017模拟赛6 解题报告——五十岚芒果酱
1.ksum(ksum) [问题描述] Peter喜欢玩数组.NOIP这天,他从Jason手里得到了大小为n的一个正整数 数组. Peter求出了这个数组的所有子段和,并将这n(n+)/2个数降序排序 ...
- 冲刺Noip2017模拟赛5 解题报告——五十岚芒果酱
1. 公约数(gcd) [问题描述] 给定一个正整数,在[,n]的范围内,求出有多少个无序数对(a,b)满足 gcd(a,b)=a xor b. [输入格式] 输入共一行,一个正整数n. [输出格式] ...
- 冲刺Noip2017模拟赛3 解题报告——五十岚芒果酱
题1 素数 [问题描述] 给定一个正整数N,询问1到N中有多少个素数. [输入格式]primenum.in 一个正整数N. [输出格式]primenum.out 一个数Ans,表示1到N中有多少个素 ...
随机推荐
- 前端使用 Konva 实现可视化设计器(21)- 绘制图形(椭圆)
本章开始补充一些基础的图形绘制,比如绘制:直线.曲线.圆/椭形.矩形.这一章主要分享一下本示例是如何开始绘制一个图形的,并以绘制圆/椭形为实现目标. 请大家动动小手,给我一个免费的 Star 吧~ 大 ...
- 折腾 Quickwit,Rust 编写的分布式搜索引擎-官方教程
快速上手 在本快速入门指南中,我们将安装 Quickwit,创建一个索引,添加文档,最后执行搜索查询.本指南中使用的所有 Quickwit 命令都在 CLI 参考文档 中进行了记录. https:// ...
- Navicat16 安装破解教程
Navicat16 安装破解教程 Navicat 16.1 什么是Navicat? 官网下载Navicat 注册包的使用 Navicat 16.1 在文章最后添加工作号 回复关键词获取注册机 什么是N ...
- vue 根据div id 滚动到指定view到可视视图中
<div id="name" @click="scrollToViewById('name')"> ...... </div> scro ...
- 【YashanDB知识库】离线升级一章22.2不支持直接升级到23.1
[标题]离线升级一章22.2不支持直接升级到23.1 [问题分类]文档问题 [关键词]YashanDB, 离线升级, 版本兼容 [问题描述]文档中提到22.2版本不支持直接升级到23.1. [问题原因 ...
- 【YashanDB知识库】存储过程报错snapshot too old
问题描述 20231127上午客户反馈绩效系统20231125.20231126出现2次YAS-02020 snapshot too old的问题,测试也有类似问题. 该过程是客户新增的存储过程,目的 ...
- Git使用经验总结6-删除远端历史记录
删除远端的历史记录但是不影响最新的仓库内容是笔者一直想实现的功能,有两个很不错的用处: 有的历史提交不慎包含了比较敏感的信息,提交的时候没注意,过了一段时间才发现.这个时候已经有了很多新的历史提交,无 ...
- Failed to convert value of type 'java.lang.String' to required type
DEBUG 微信小程序Java后台 Failed to convert value of type 'java.lang.String' to required type 产生这种条件的原因一般是使用 ...
- 物体检测序列之一:ap, map
准确率(Precision),也叫正确预测率(positive predictive value),在模式识别.信息检索.机器学习等研究应用领域,准确率用来衡量模型预测的结果中相关或者正确的比例.而召 ...
- Asp.net core 学习笔记 ( 小东西 )
简单的为 url 添加 query var parametersToAdd = new System.Collections.Generic.Dictionary<string, string& ...