It has been a while since I wrote anything, I have been busy with my new job that involves doing some interesting work on performance tuning. One of the challenges is to reduce object creation during the critical part of the application.

Garbage Collection hiccups has been a main pain point in java for some time, although java has improved over time the GC algorithms. Azul is a market leader developing pause-less GC but the Azul JVM is not free as speech!

Creating too many temporary/garbage objects doesn’t work too well because it creates work for the GC and it is going to have a negative effect on the latency. Too much garbage also doesn’t work well with multi-core system because it causes cache pollution.

So how should we fix this ?

Garbage less coding

This is only possible if you know how many objects you need upfront and pre-allocate them, but in reality this is very difficult to find. But even if you managed to do that, then you have to worry about another issue

  • You might not have enough memory to hold all the objects you need
  • You have to also handle concurrency

So what is the solution for the above problems

There is the Object Pool design pattern that can address both
of the above issues. It lets you to specify a number of objects that you need in a pool and handles concurrent requests to serve the requested objects.

Object Pool has been the base of many applications that have low latency requirements. A flavor of the object pool is the Flyweight design
pattern.

Both of the patterns above will help us in avoiding object creation. That is great so now GC work is reduced and in theory our application performance should improve. In practice, this doesn’t happen that way because Object Pool/Flyweight has to handle concurrency and whatever
advantage you get by avoiding object creation is lost because of concurrency issue.

What is the most common way to handle concurrency

Object pool is a typical producer/consumer problem and it can be solved by using the following techniques:

Synchronized: This was the only way to handle concurrency before JDK 1.5. Apache has written a wonderful object
pool
 API based on synchronized

Locks: Java added excellent support for concurrent programming after JDK 1.5. There has been some work to use Locks to develop Object Pool for eg furious-objectpool

Lock Free: I could not find any implementation that is built using fully lock free technique, but furious-objectpool uses
a mix ofArrayBlocking queue
ConcurrentLinked queue

Lets measure performance

In this test I have created a pool of 1 Million objects and those objects are accessed by a different pool implementation, objects are taken from the pool and returned back to the pool.

This test first starts with 1 thread and then the number of threads is increased to measure how the different pool implementations perform under contention

  • X Axis – No Of Threads
  • Y Axis – Time in Ms – Lower time is better

This test includes pools from Apache, Furious Pool & an ArrayBlocking based Pool

The Apache performed the worst and as the number of threads increases, performance degrades further. The reason is that the Apache pool is based on heavy use of “synchronized”

The other two, Furious & ArrayBlocking based pool performs better but both of them also slow down as contention increases.

ArrayBlocking queue based pool takes around 1000 ms for 1 Million items when 12 threads are trying to access the pool. Furious pool which internally uses Arrayblocking queue takes around 1975 ms for the same thing.

I have to do a more detailed investigation to find out why Furious is taking double time because it is also based on the ArrayBlocking queue.

Performance of arrayblocking queue is decent but it is a lock based approach. What type of performance do we get if we can implement lock free pool?

Lock free pool

Implementing lock free pool is not impossible but a bit difficult because you have to handle multiple producers & consumers.

I will implement a hybrid pool which will use lock on the producer side & non blocking technique on the consumer side.

Lets have a look at some numbers

I performed same test with new implementation (FastPool) and it is almost 30% faster than ArayBlocking queue.

30% improvement is not bad, it can definitely help us meet the latency goal.

What makes Fast Pool fast!

I used a couple of techniques to make it fast

  • Producers are lock based – Multiple producers are managed using locks, this is same as Array Blocking queue, so nothing great about this.
  • Immediate publication of released item – it publishes the element before the lock is released using cheap memory barrier. This gives some gain
  • Consumers are non blocking – CAS is used to achieve this, consumers are never blocked due to producers. Array Blocking queue blocks the consumer because it uses the same lock for the producer & the consumer
  • Thread Local to maintain value locality -  Thread Local is used to acquire the last value that was used, this reduces contention to a great extent.

If you are interested in having a look at code then it is available @ FastObjectPool.java

Reference: Lock Less
Java Object Pool
 from our JCG partner Ashkrit Sharma at the Are
you ready
 blog.

Lock Less Java Object Pool的更多相关文章

  1. 设计模式之美:Object Pool(对象池)

    索引 意图 结构 参与者 适用性 效果 相关模式 实现 实现方式(一):实现 DatabaseConnectionPool 类. 实现方式(二):使用对象构造方法和预分配方式实现 ObjectPool ...

  2. java Object类学习

    /* * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETA ...

  3. Object Pool

    设计模式之美:Object Pool(对象池)   索引 意图 结构 参与者 适用性 效果 相关模式 实现 实现方式(一):实现 DatabaseConnectionPool 类. 意图 运用对象池化 ...

  4. java Object解析

    java Object是所有对象的根父类,所有对象都直接或间接集成自该类. java 的Object类也比较简单,有equals(Object).toString().finalize() java方 ...

  5. Java Object 引用传递和值传递

    Java Object 引用传递和值传递 @author ixenos Java没有引用传递: 除了在将参数传递给方法(或函数)的时候是"值传递",传递对象引用的副本,在任何用&q ...

  6. Java Object 构造方法的执行顺序

    Java Object 构造方法的执行顺序 @author ixenos 为了使用类而做的准备工作包括三个步骤 1)加载:类加载器查找字节码(一般在classpath中找),从字节码创建一个Class ...

  7. Java Object 对象创建的方式 [ 转载 ]

    Java Object 对象创建的方式 [ 转载 ] @author http://blog.csdn.net/mhmyqn/article/details/7943411 显式创建 有4种显式地创建 ...

  8. Java Object 对象拷贝答疑

    Java Object 对象拷贝答疑 @author ixenos 摘要:在对象的clone过程需要注意的几点.关于关键字this.super 关于clone[对象拷贝] 在实际编程过程,有时候我们会 ...

  9. Java Object 对象拷贝

    Java Object 对象拷贝 @author ixenos JAVA 对象拷贝 Java里的clone分为:  1.浅拷贝:浅复制仅仅复制所考虑的对象,而不复制它所引用的对象,Object类里的c ...

  10. .NET Core中Object Pool的简单使用

    前言 复用,是一个重要的话题,也是我们日常开发中经常遇到的,不可避免的问题. 举个最为简单,大家最为熟悉的例子,数据库连接池,就是复用数据库连接. 那么复用的意义在那里呢? 简单来说就是减少不必要的资 ...

随机推荐

  1. the request was rejected because no multipart boundary was found

    报错: Failed to parse multipart servlet request; nested exception is java.io.IOException: org.apache.t ...

  2. box-sizing属性的理解

    使用原因 盒模型布局中padding与border也是具有尺寸的,为避免其对页面布局产生影响,可使用box-sizing: border-box;属性设置盒模型,此时便可只用设置元素宽高即可. 属性详 ...

  3. Redis过期策略以及Redis的内存淘汰机制

    此篇介绍了Redis过期策略以及Redis的内存淘汰机制,从内存淘汰的8种策略,如何开启内存淘汰策略到如何选择合适的淘汰策略,对Redis的内存淘汰机制做了全方位的阐述 如何高效的使用内存对于redi ...

  4. 数据结构 - 关键路径(AOE)

    数据结构 - 关键路径求解

  5. 暑假集训CSP提高模拟11

    A.Fate 求次短路方案数. 这题有点小水了,好像之前做过. 具体的方案显然是 DP,考虑枚举当前每一个路径长度,假如比最短路更优则覆盖最短路,之前的最短路用来覆盖次短路. 否则如果比次短路更优,则 ...

  6. Java如何解决同时出库入库订单号自动获取问题

    在Java中处理同时出库和入库的订单号自动获取问题,通常涉及到多线程环境下的并发控制.为了确保订单号的唯一性和连续性,我们可以使用多种策略,如数据库的自增ID.分布式锁.或者利用Java的并发工具类如 ...

  7. Salesforce AI Specialist篇之 Einstein Trust Layer

    本篇参考: https://trailhead.salesforce.com/content/learn/trails/drive-productivity-with-einstein-ai http ...

  8. 2. 解释器与PyCharm安装

    1. 解释器安装 官网 选择解释器版本 建议选择比最新版本低2~3个版本,当前选择3.10 添加到环境变量,如不勾选后续可手动配置 安装完成后已将解释器安装路径自动添加到环境变量中 将解释器安装路径添 ...

  9. Linux_权限理解(详细PLUS)

    1.用户 Linux下有两种用户:超级用户(root)和普通用户: 超级用户:可以再linux系统下做任何事情,不受限制 普通用户:在linux下做有限的事情 超级用户的命令提示符是"#&q ...

  10. 我在大厂做 CR——为什么建议使用枚举来替换布尔值

    使用枚举替换布尔值主要基于以下几个原因 ● 可读性 ● 可拓展性 ● 安全防控 可读性 我们会定义 boolean 类型(true 或 false)作为方法参数,虽然比较简洁,但有时候参数的含义往往不 ...