[Luogu3674]小清新人渣的本愿
题意
给你一个序列a,长度为n,有m次操作,每次询问一个区间是否可以选出两个数它们的差为x,或者询问一个区间是否可以选出两个数它们的和为x,或者询问一个区间是否可以选出两个数它们的乘积为x ,这三个操作分别为操作1,2,3
选出的这两个数可以是同一个位置的数
所有数据\(\le 10^5\)
sol
正好今天考试一道题要用到\(bitset\)就跑过来写一下。
所谓\(bitset\)其实就是一个不用手写的压位,一般用来优化暴力,复杂度\(O(\frac{n^2}{64})\)哈。(毕竟很多时候除个\(64\)复杂度就可以过了)
这个题哈。用莫队的方法离线处理每个询问,把每种数字出现的集合压进一个\(bitset\)。对于减法就直接用S和S>>x取交集判断是否为空。对于加法我们需要额外维护一个反过来的\(bitset\),然后也是右移一下然后取个交。
对于乘法,可以直接枚举因数判断是否存在即可。
复杂度\(O(\frac{n^2}{64}+n\sqrt n+m\sqrt n)\),所以说这是一个正确的复杂度。
莫队可以加一些优化,比如说对右端点排序的时候根据左端点所在块的奇偶性从大到小或者是从小到大排序。(还是快了蛮多的)
code
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<bitset>
using namespace std;
int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
const int N = 1e5;
int n,m,blk,a[N+5],cnt[N+5],ans[N+5];
struct query{
int opt,l,r,x,id;
bool operator < (const query &b) const
{
if (l/blk!=b.l/blk) return l/blk<b.l/blk;
return ((l/blk)&1)?r>b.r:r<b.r;
}
}q[N+5];
bitset<N+5>S1,S2;
void add(int x)
{
++cnt[x];
if (cnt[x]==1) S1[x]=1,S2[N-x]=1;
}
void del(int x)
{
--cnt[x];
if (cnt[x]==0) S1[x]=0,S2[N-x]=0;
}
int main()
{
n=gi();m=gi();blk=sqrt(n);
for (int i=1;i<=n;++i) a[i]=gi();
for (int i=1;i<=m;++i) q[i]=(query){gi(),gi(),gi(),gi(),i};
sort(q+1,q+m+1);
int L=1,R=0;
for (int i=1;i<=m;++i)
{
while (R<q[i].r) add(a[++R]);
while (L>q[i].l) add(a[--L]);
while (R>q[i].r) del(a[R--]);
while (L<q[i].l) del(a[L++]);
if (q[i].opt==1)
ans[q[i].id]=(S1&(S1>>q[i].x)).any();
if (q[i].opt==2)
ans[q[i].id]=(S1&(S2>>N-q[i].x)).any();
if (q[i].opt==3)
for (int j=1;j*j<=q[i].x;++j)
if (q[i].x%j==0)
if (S1[j]&&S1[q[i].x/j]) {ans[q[i].id]=1;break;}
}
for (int i=1;i<=m;++i) puts(ans[i]?"hana":"bi");
return 0;
}
[Luogu3674]小清新人渣的本愿的更多相关文章
- luogu3674 小清新人渣的本愿 (bitset+莫队)
对于加减,用bitset维护当前每个数有没有 对于乘,暴力枚举约数 然后莫队 复杂度$O(m(\sqrt{n}+\frac{c}{64}))$ #include<bits/stdc++.h> ...
- Luogu3674小清新人渣的本愿
https://zybuluo.com/ysner/note/1109536 题面 给你一个序列a,长度为n,有m次操作,每次询问一个区间 是否可以选出两个数它们的差为x 是否可以选出两个数它们的和为 ...
- LuoguP3674 小清新人渣的本愿 && BZOJ4810: [Ynoi2017]由乃的玉米田
题目地址 小清新人渣的本愿 [Ynoi2017]由乃的玉米田 所以这两题也就输出不一样而已 题解 这种lxl的题还是没修改操作的题基本就是莫队 分开考虑每个询问 1.减法 \(a-b=x⇒a=b+x\ ...
- P3674 小清新人渣的本愿
P3674 小清新人渣的本愿 一道妙不可言的题啊,,, 一看就知道是个莫队 考虑求答案 1号操作就是个大bitset,动态维护当前的bitset \(S\),把能取哪些值都搞出来,只要\(S\ and ...
- 【洛谷3674】小清新人渣的本愿(莫队,bitset)
[洛谷3674]小清新人渣的本愿(莫队,bitset) 题面 洛谷,自己去看去,太长了 题解 很显然的莫队. 但是怎么查询那几个询问. 对于询问乘积,显然可以暴力枚举因数(反正加起来也是\(O(n\s ...
- 洛谷 P3674 小清新人渣的本愿 [莫队 bitset]
传送门 题意: 给你一个序列a,长度为n,有Q次操作,每次询问一个区间是否可以选出两个数它们的差为x,或者询问一个区间是否可以选出两个数它们的和为x,或者询问一个区间是否可以选出两个数它们的乘积为x ...
- [Luogu 3674]小清新人渣的本愿
Description 题库链接 给你一个序列 \(A\) ,长度为 \(n\) ,有 \(m\) 次操作,每次询问一个区间是否可以 选出两个数它们的差为 \(x\) : 选出两个数它们的和为 \(x ...
- 【题解】Luogu P3674 小清新人渣的本愿
原题传送门 这题还算简单(我记得我刚学oi时就来写这题,然后暴力都爆零了) 看见无修改,那么这题应该是莫队 维护两个bitset,第二个是第一个的反串,bitset内维护每个数字是否出现过 第一种操作 ...
- 洛谷P3674 小清新人渣的本愿
题意:多次询问,区间内是否存在两个数,使得它们的和为x,差为x,积为x. n,m,V <= 100000 解: 毒瘤bitset...... 假如我们有询问区间的一个桶,那么我们就可以做到O(n ...
随机推荐
- 前端 css续
CSS选择器 1.标签选择器 为类型标签设置样式例如:<div>.<a>.等标签设置一个样式,代码如下: <style> /*标签选择器,找到所有的标签应用以下样式 ...
- PAT 天梯赛 L1-046. 整除光棍 【模拟除法】
题目链接 https://www.patest.cn/contests/gplt/L1-046 思路 用同余定理以及模拟除法. AC代码 #include <iostream> #incl ...
- iOS 反射 学习 和 运用
iOS 反射 学习 和 运用 反射: 通过 类名来获得生成的相应的类的实例 的这种机制 叫 反射 常用的反射方式 把 NSDictionary 转成 自定义 model 自定义 model 转 ...
- OpenSSL for Android
http://blog.csdn.net/xiongmc/article/details/25736041 OpenSSL1)开源项目Guardian Project试图让Android手机也拥有类似 ...
- INSPIRED启示录 读书笔记 - 第17章 产品人物角色
理解目标用户 人物角色又称为用户特征记录(user profile),是指通过与用户沟通交流,确定典型的目标用户类型,在理解各类目标用户的特征的基础上建立的人物原型 为了发掘潜在的人物角色,产品经理必 ...
- INSPIRED启示录 读书笔记 - 第15章 特约用户
产品开发伙伴 为了解决两个问题——既深入洞察目标用户的需求,又赢得用户对产品的推荐,建议征集特约用户协助完成产品研发 在项目的开始阶段物色至少六位积极.活跃.乐于分享的目标户,要求是他们在产品的目标用 ...
- mysql中的一些操作
查询mysql中事务提交的情况: show variables like '%commit%'; 可以查看当前autocommit值 在mysql数据库中它的默认值是"on"代表自 ...
- 【atcoder】Two Sequences [arc092 D](思维题)
题目传送门:https://arc092.contest.atcoder.jp/tasks/arc092_b 这场arc好难啊...这场感觉不像正常的arc...其实这道题还可以更早写出来的,但是蒟蒻 ...
- Centos7 远程登录端口22 设置
第一步 #查看本机是否安装SSH软件包 [root@localhost ~]# rpm -qa | grep ssh openssh-server-6.6.1p1-12.el7_1.x86_64 op ...
- iOS APP AppIcon& LaunchImage
AppIcon size for iPhone: 29 - Settings @1x 29*29, 58 - Settings @2x 58*58, 87 - Settings @3x 87*87 ...