LSTM与Highway-LSTM算法实现的研究概述

zoerywzhou@gmail.com

http://www.cnblogs.com/swje/

作者:Zhouwan

 2015-12-22

 

声明:

1)该LSTM的学习系列是整理自网上很多大牛和机器学习专家所无私奉献的资料的。具体引用的资料请看参考文献。具体的版本声明也参考原文献。

2)本文仅供学术交流,非商用。所以每一部分具体的参考资料并没有详细对应。如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主删除。

3)本人才疏学浅,整理总结的时候难免出错,还望各位前辈不吝指正,谢谢。

请联系:zoerywzhou@gmail.com 或13813017783@163.com

 
本研究课题系本人本科毕业设计,开题报告初步确定,后面会实时更新,希望能与大家相互交流,共同进步!
 
一、研究计划: 
 
1、理解LSTM的基本概念、原理与相关应用
2、剖析LSTM的代码实现
3、理解深度学习中Highway的思想,以及如何在LSTM中实现Highway
4、剖析Highway-LSTM代码
5、选择一个应用,进行验证
 
定期(每隔一月)对算法剖析的进展做总结,目标在3月底,完全掌握LSTM的代码与算法。
 
二、以下为部分学习资料的链接:
 
Github上的资源:
 
 
Basic LSTM by Torch (LUA) https://github.com/karpathy/char-rnn 
 
Highway LSTM by Torch (LUA) https://github.com/yoonkim/lstm-char-cnn 
 
 
LSTM implementation: http://apaszke.github.io/posts.html 
 

部分参考文献:

[High-way-lstm-1]High-way LSTM RNNS FOR Distant Speech Recognition.pdf : 访问密码 510b

[High-way-lstm-2]Character-Aware Neural Language Models.pdf  :访问密码 510b

神经网络课件:NN-Lectures:CSC321 Winter 2015 Introduction to Neural Networks:访问密码 0442

三、我的学习计划如下:

1、2015.12.23、24,28-30;2016.1.3、4(一周时间)————理解LSTM的基本概念、原理与相关应用
  (1)结合NN-lectures课件和以下网址看BP算法,了解其原理:(2015.12.23、24)
 
                                 
      Principles of training multi-layer neural network using backpropagation                                       
  (2)理解LSTM的基本概念、原理:(12.28~31)
 
 
      LSTM implementation: http://apaszke.github.io/posts.html   (译文)    
 
      
      深入浅出LSTM神经网络:http://www.csdn.net/article/2015-06-05/2824880
 
      Learning to read with recurrent neural networks(博士生Zachary Chase Lipton)
 
      顺便理解一下RNN,Andrej Karpathy写了篇非常棒的博客:递归神经网络不可思议的有效性英文原版
 
(3)了解LSTM的应用:(2016.1.3、4)

 目前了解到的LSTM应用大概有以下几个:
 
来自知乎:http://www.zhihu.com/question/37082800/answer/70333603

(1) Language Model
The Unreasonable Effectiveness of Recurrent Neural Networks

(2) Image Captioning
[CVPR15]]Long-term Recurrent Convolutional Networks for Visual Recognition and Description
Deep Visual-Semantic Alignments for Generating Image Descriptions

(3)Speech Recognition

(4)Machine Translation
[NIPS15]Sequence to Sequence Learning with Neural Networks.

 
2、2016.1.5-2016.1.19 ————剖析LSTM的代码实现,动手编程序,并写一篇总结日志,发布到CSDN上:
 
    2016.1.5-2016.1.10 ——Basic LSTM (LUA) https://github.com/wojzaremba/lstm    
       https://github.com/bgshih/crnn
 
       学LUA:(在线学习手册):http://manual.luaer.cn/
        关于LUA闭包的解释:http://www.2cto.com/kf/201503/382691.html
 
    2016.1.11-2016.1.18 ——Basic LSTM by Torch (LUA) https://github.com/karpathy/char-rnn 
 
    2016.1.19 ——写一篇总结日志,发布到CSDN上
 
 *******************************************************************
   

 非学习时间:2016.1.19-2.22寒假回家,暂定每周两天时间看看论文
 {
    2016.1.19寒假回家!
  
    提高time:健身、读书【写读后感】、写日志【完成日志《保研之路》,分享到保研论坛】
 }

 

 *******************************************************************
 
 
3、2016.2.15-2016.2.27 ————理解深度学习中Highway的思想,以及如何在LSTM中实现Highway
 
 
 2016.2.28-2016.2.29 ——写一篇总结日志,发布到CSDN上
 
4、2016.3.1-2016.3.29 ————剖析Highway-LSTM代码
 
  Highway LSTM by Torch (LUA) https://github.com/yoonkim/lstm-char-cnn 
 
 2016.3.30-2016.3.31 ——写一篇总结日志,发布到CSDN上
 
5、2016.4.1-2016.4.30 ————选择一个应用,进行验证
    
 
 先做出来,再看应用吧。。

LSTM与Highway-LSTM算法实现的研究概述的更多相关文章

  1. Highway LSTM 学习笔记

    Highway LSTM 学习笔记 zoerywzhou@gmail.com http://www.cnblogs.com/swje/ 作者:Zhouwan  2016-4-5   声明 1)该Dee ...

  2. 理解LSTM网络--Understanding LSTM Networks(翻译一篇colah's blog)

    colah的一篇讲解LSTM比较好的文章,翻译过来一起学习,原文地址:http://colah.github.io/posts/2015-08-Understanding-LSTMs/ ,Posted ...

  3. LSTM和双向LSTM讲解及实践

    LSTM和双向LSTM讲解及实践 目录 RNN的长期依赖问题LSTM原理讲解双向LSTM原理讲解Keras实现LSTM和双向LSTM 一.RNN的长期依赖问题 在上篇文章中介绍的循环神经网络RNN在训 ...

  4. 使用Keras进行深度学习:(六)LSTM和双向LSTM讲解及实践

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 介绍 长短期记忆(Long Short Term Memory, ...

  5. DNA甲基化研究概述

    DNA甲基化研究概述 生信技能树 已关注 2018.01.23 11:43 字数 993 阅读 183评论 0喜欢 1 DNA甲基化(DNA methylation)是最早被研究的重要表观遗传修饰之一 ...

  6. PaddlePaddle︱开发文档中学习情感分类(CNN、LSTM、双向LSTM)、语义角色标注

    PaddlePaddle出教程啦,教程一部分写的很详细,值得学习. 一期涉及新手入门.识别数字.图像分类.词向量.情感分析.语义角色标注.机器翻译.个性化推荐. 二期会有更多的图像内容. 随便,帮国产 ...

  7. SSE图像算法优化系列二十四: 基于形态学的图像后期抗锯齿算法--MLAA优化研究。

    偶尔看到这样的一个算法,觉得还是蛮有意思的,花了将近10天多的时间研究了下相关代码. 以下为百度的结果:MLAA全称Morphological Antialiasing,意为形态抗锯齿是AMD推出的完 ...

  8. 【uva 1615】Highway(算法效率--贪心 区间选点问题)

    题意:给定平面上N个点和一个值D,要求在x轴上选出尽量少的点,使得对于给定的每个店,都有一个选出的点离它的欧几里德距离不超过D. 解法:先把问题转换成模型,把对平面的点满足条件的点在x轴的直线上可得到 ...

  9. 对A-Star寻路算法的粗略研究

    首先来看看完成后的效果: 其中灰色代表路障,绿色是起点和移动路径,红色代表终点   // = openArray[i+1].F) { minNode = openArray[i+1]; } } sta ...

随机推荐

  1. shuit模块

    shuit模块 #高级的 文件.文件夹.压缩包 处理模块 shutil.copyfileobj(fsrc, fdst[, length])将文件内容拷贝到另一个文件中,可以部分内容 def copyf ...

  2. 【zabbix】zabbix忘记密码,重置密码

    忘记密码这种事经常会发生,这里我们介绍一种zabbix忘记用户密码的处理方式. 原理: zabbix存储在数据库中用户名密码是经过32位,小写,md5加密过的.我们可以手动修改数据库中用户的密码. 实 ...

  3. mysql数据库中表记录的玩法

    一.增加表记录(相当于插入表记录) 1. 插入完整数据(顺序插入) 语法一: INSERT INTO 表名(字段1,字段2,字段3…字段n) VALUES(值1,值2,值3…值n); 语法二: INS ...

  4. C语言预处理命令的使用

    cppreference.com -> 预处理命令 -> 详细说明 预处理命令 #,## # 和 ## 操作符是和#define宏使用的. 使用# 使在#后的首个参数返回为一个带引号的字符 ...

  5. Educational Codeforces Round 29(6/7)

    1.Quasi-palindrome 题意:问一个字符串(你可以添加前导‘0’或不添加)是否是回文串 思路:将给定的字符串的前缀‘0’和后缀‘0’都去掉,然后看其是否为回文串 #include< ...

  6. HackerRank - fibonacci-modified 【大数】

    思路 用PYTHON 或 JAVA 干掉 AC代码 a, b, n = map(int, input().split()) for i in range (2, n, 1) : temp = b b ...

  7. HBase基本知识介绍及典型案例分析

    本次分享的内容主要分为以下五点: HBase基本知识: HBase读写流程: RowKey设计要点: HBase生态介绍: HBase典型案例分析. 首先我们简单介绍一下 HBase 是什么. HBa ...

  8. VC引用静态库

    对于路径的设置: Tools->Options->Directory中设置的Lib路径,是给VC环境设置的, 所以只要是这个VC打开的项目,都会包含这些路径. Project->Se ...

  9. 对”唯一键可以包含NULL值,并且每个NULL值都是唯一的(即NULL!=NULL)“理解

    因为最近在写一篇关于字符串模糊检索的论文,开始比较细致的研究数据库(MySQL)中的index问题,变到图书馆借了本<Effective MySQL之SQL语句最优化>(Ronald Br ...

  10. android 7.0 (nougat)的编译优化-ninja

    http://blog.csdn.net/songjam/article/details/52640501 版权声明:本文为博主原创文章,未经博主允许不得转载. 从官方的定义,ninja大大缩短了an ...