题意

求\(\gcd(a, b)\),其中\(a,b\leq10^{10000}\)

题解

使用\(\text{Stein}\)算法,其原理是不断筛除因子\(2\)然后使用更相减损法

如果不筛\(2\)因子的话复杂度是线性的,比如\(a=1,b=10^{10000}\)

再证明下更相减损术,即\(\gcd(a,b)=gcd(a-b,b)\):

假设\(d=\gcd(a,b)\),则\(a=pd,b=qd\)

根据定义可知\(\gcd(p,q)=1\)

因此\(px+qy=1\)存在解\(x,y\)

此时\(a-b=pd-q-d=(p-q)d,b=qd\)

\((p-q)x+q(x+y)=px+qy=1\)

得到\(\gcd(p-q,q)=1\),根据定义得到\(d=\gcd(a-b,b)\)

注意一下高精要压位,不然常数巨大

#include <algorithm>
#include <cstring>
#include <cstdlib>
#include <cstdio>
using namespace std; const int base = 1e9;
const int N = 1e4 + 10; struct Int {
int len, n[N / 9 + 10];
Int() {}
Int(char * s) {
int x = strlen(s);
len = x / 9 + (x % 9 ? 1 : 0);
int p = x - 1;
for(int i = 1; i <= len; i ++) {
n[i] = 0;
for(int j = min(p, 8); j >= 0; j --)
n[i] = n[i] * 10 + (s[p - j] & 15);
p -= 9;
}
}
bool zero() { return len == 1 && n[1] == 0; }
bool judge() { return !zero() && 0 == (n[1] & 1); }
bool operator < (const Int &b) const {
if(len != b.len) return len < b.len;
for(int i = len; i >= 1; i --)
if(n[i] != b.n[i]) return n[i] < b.n[i];
return 0;
}
bool operator -= (const Int &b) {
for(int i = 1; i <= len; i ++) {
if(i <= b.len) {
n[i] -= b.n[i];
if(n[i] < 0) n[i + 1] --, n[i] += base;
}
}
for(; !n[len] && len > 1; len --);
return zero();
}
void div2() {
for(int i = 1; i <= len; i ++) {
if(n[i] & 1) n[i - 1] += base >> 1;
n[i] >>= 1;
}
for(; !n[len] && len > 1; len --);
}
void operator <<= (const int &x) {
for(int t = 1; t <= x; t ++) {
n[len + 1] = 0;
for(int i = len; i >= 1; i --) {
n[i] <<= 1; n[i + 1] += n[i] / base; n[i] %= base;
}
if(n[len + 1]) len ++;
}
this -> print();
}
void print() {
for(int i = len; i >= 1; i --)
if(i == len) printf("%d", n[i]);
else printf("%09d", n[i]);
printf("\n");
}
} x, y; int main() {
static char A[N], B[N];
scanf("%s %s", A, B);
x = Int(A), y = Int(B);
if(x.zero()) return y.print(), 0;
if(y.zero()) return x.print(), 0;
int i = 0, j = 0;
for(; x.judge(); i ++) x.div2();
for(; y.judge(); j ++) y.div2();
while(1) {
if(!(x < y)) {
if(x -= y) return y <<= min(i, j), 0;
while(x.judge()) x.div2();
} else {
if(y -= x) return x <<= min(i, j), 0;
while(y.judge()) y.div2();
}
}
return 0;
}

「BZOJ 1876」「SDOI 2009」SuperGCD「数论」的更多相关文章

  1. 【BZOJ 1877】【SDOI 2009】晨跑

    拆点跑$MCMF最小费用最大流$ 复习一下$MCMF$模板啦啦啦--- 一些坑:更新$dist$后要接着更新$pre$,不要判断是否在队列中再更新,,,听不懂吧,听不懂就对了,因为只有我才会在这种错误 ...

  2. 【BZOJ 1875】【SDOI 2009】HH去散步

    水啊水,最后ans别忘了%哦! #include<cstdio> #include<cstring> #include<algorithm> using names ...

  3. 「SDOI 2009」Elaxia的路线

    发现自己这几天智商完全不在线-- 这道题的数据十分的水,怎样都可以艹过去-- 开始想了一个完全错误的算法,枚举一对点,判断这一对点是否同时在两条最短路上,是就用两点之间的路径更新答案.显然这样是错的: ...

  4. 「BZOJ 4228」Tibbar的后花园

    「BZOJ 4228」Tibbar的后花园 Please contact lydsy2012@163.com! 警告 解题思路 可以证明最终的图中所有点的度数都 \(< 3\) ,且不存在环长是 ...

  5. 「BZOJ 3645」小朋友与二叉树

    「BZOJ 3645」小朋友与二叉树 解题思路 令 \(G(x)\) 为关于可选大小集合的生成函数,即 \[ G(x)=\sum[i\in c ] x^i \] 令 \(F(x)\) 第 \(n\) ...

  6. 「BZOJ 4502」串

    「BZOJ 4502」串 题目描述 兔子们在玩字符串的游戏.首先,它们拿出了一个字符串集合 \(S\),然后它们定义一个字符串为"好"的,当且仅当它可以被分成非空的两段,其中每一段 ...

  7. 「BZOJ 4289」 PA2012 Tax

    「BZOJ 4289」 PA2012 Tax 题目描述 给出一个 \(N\) 个点 \(M\) 条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点 \(1\) 到点 \( ...

  8. 「BZOJ 2534」 L - gap字符串

    「BZOJ 2534」 L - gap字符串 题目描述 有一种形如 \(uv u\) 形式的字符串,其中 \(u\) 是非空字符串,且 \(v\) 的长度正好为 \(L\), 那么称这个字符串为 \( ...

  9. 「BZOJ 2956」模积和

    「BZOJ 2956」模积和 令 \(l=\min(n,m)\).这个 \(i\neq j\) 非常不优雅,所以我们考虑分开计算,即: \[\begin{aligned} &\sum_{i=1 ...

随机推荐

  1. spring-cloud配置ribbon负载均衡

    spring-cloud配置ribbon负载均衡 ribbon提供的负载均衡就是开箱即用的,简单的不能再简单了 为了顺利演示此demo,你需要如下 需要提前配置eureka服务端,具体看 https: ...

  2. 第十一章 SpringMvc(待续)

    ············

  3. ORACLE各版本下载地址

    ORACLE 10g下载|ORACLE 10g下载地址|ORACLE 10g官网下载地址 ORACLE 10g下载地址 oracle 下载还需要用户名我自己注册了个方便大家使用下载 user:1603 ...

  4. Win7 IE11 F2无法切换版本

    Win7 IE11 F2无法切换版本 http://www.microsoft.com/zh-cn/download/confirmation.aspx?id=45154 选择操作系统对应的版本 ht ...

  5. sql 2008 权限角色控制

    Use Test --创建角色 create role rtt create user username for login username --将用户TestUser添加到TestRole角色中 ...

  6. js处理小数加减时精度失真

    最近公司业务有用js处理数据加减,但有时候会出现很多位小数:后来发现是js处理小数时精度失真:为了后边不在犯类似错误,笔者觉得有必要记录下处理方法,当然处理方法有很多种,这里笔者找了一种较为简洁的方法 ...

  7. Vmware中的centos虚拟机克隆之后没有eth0

    克隆虚拟机之后,CentOS没有eth0的解决办法 我们常常需要从一台已经安装完成的虚拟机系统克隆出来一个新系统(克隆时候必须要改变网卡物理地址,这一点无需多说),但是新系统启动之后,会发现系统网络工 ...

  8. QQ、邮箱、手机号 正则验证

    邮箱:/^([a-zA-Z0-9_\.\-])+\@(([a-zA-Z0-9\-])+\.)+([a-zA-Z0-9]{2,4})+$/ 手机号:/^(((13[0-9]{1})|(15[0-9]{1 ...

  9. jdk环境变量一键设置 管理員运行

    退出360等杀毒软件 本机win10 其他环境自测.参考了网上代码修改. @echo off rem dss color 02 mode con cols=70 lines=30 title JDK ...

  10. MongoDB简介及基础知识

    MongoDB简介 一.MongDB是一个高性能,开源,无模式的文档型NosQL数据库.主要功能特性: 1.文件存储格式BSON(一种json的扩展) 2.模式自由,数据格式不受限了表的结构 3.支持 ...