洛谷 P3380 【模板】二逼平衡树(树套树)
题面
题解
2019年AC的第一道题~~
函数名命名为rank竟然会ce
我写的是树状数组套值域线段树(动态开点)
操作1:询问\(k\)在\([l-r]\)这段区间有多少数比它小,再加\(1\)
操作2:前缀和思想得到\([l-r]\)区间的线段树,然后类似平衡树找第\(k\)大
操作3:直接修改
操作4/5:操作1+操作2
Code
#include<bits/stdc++.h>
#define LL long long
#define RG register
const int N = 50010;
using namespace std;
inline int gi() {
RG int x = 0; RG char c = getchar(); bool f = 0;
while (c != '-' && (c < '0' || c > '9')) c = getchar();
if (c == '-') c = getchar(), f = 1;
while (c >= '0' && c <= '9') x = x*10+c-'0', c = getchar();
return f ? -x : x;
}
int tot, A[N<<1], a[N], cnt, n;
int t1, t2, tmp1[N], tmp2[N];
struct question {
int op, l, r, k;
}q[N];
struct node {
int ls, rs, v;
}t[N<<7];
int rt[N];
#define lowbit(x) (x&(-x))
void Update(int &now, int l, int r, int pos, int k) {
if (!now) now = ++cnt;
t[now].v += k;
if (l == r) return ;
int mid = (l + r) >> 1;
if (pos <= mid) Update(t[now].ls, l, mid, pos, k);
else Update(t[now].rs, mid+1, r, pos, k);
}
void update(int x, int k) {
for (int i = x; i <= n; i += lowbit(i)) Update(rt[i], 1, tot, a[x], k);
}
int query(int now, int l, int r, int pos) {
if (l == r) return t[now].v;
int mid = (l + r) >> 1;
if (pos <= mid) return query(t[now].ls, l, mid, pos);
return t[t[now].ls].v+query(t[now].rs, mid+1, r, pos);
}
int Rank(int l, int r, int k) {
if (l > r) return 0;
l--;
int s = 0;
for (int i = r; i; i -= lowbit(i)) s += query(rt[i], 1, tot, k);
for (int i = l; i; i -= lowbit(i)) s -= query(rt[i], 1, tot, k);
return s;
}
int Kth(int l, int r, int k) {
if (l == r) return l;
int mid = (l + r) >> 1, s = 0;
for (int i = 1; i <= t1; i++) s += t[t[tmp1[i]].ls].v;
for (int i = 1; i <= t2; i++) s -= t[t[tmp2[i]].ls].v;
if (s >= k) {
for (int i = 1; i <= t1; i++) tmp1[i] = t[tmp1[i]].ls;
for (int i = 1; i <= t2; i++) tmp2[i] = t[tmp2[i]].ls;
return Kth(l, mid, k);
}
else {
for (int i = 1; i <= t1; i++) tmp1[i] = t[tmp1[i]].rs;
for (int i = 1; i <= t2; i++) tmp2[i] = t[tmp2[i]].rs;
return Kth(mid+1, r, k-s);
}
}
int kth(int l, int r, int k) {
l--; t1 = t2 = 0;
for (int i = r; i; i -= lowbit(i)) tmp1[++t1] = rt[i];
for (int i = l; i; i -= lowbit(i)) tmp2[++t2] = rt[i];
return A[Kth(1, tot, k)];
}
int main() {
//freopen(".in", "r", stdin);
//freopen(".out", "w", stdout);
n = gi();
int m = gi();
for (int i = 1; i <= n; i++) A[++tot] = a[i] = gi();
for (int i = 1; i <= m; i++) {
q[i].op = gi();
if (q[i].op != 3) {
q[i].l = gi(); q[i].r = gi(); q[i].k = gi();
if (q[i].op != 2) A[++tot] = q[i].k;
}
else {
q[i].l = q[i].r = gi();
A[++tot] = q[i].k = gi();
}
}
sort(A+1, A+1+tot);
tot = unique(A+1, A+1+tot) - A - 1;
for (int i = 1; i <= n; i++) a[i] = lower_bound(A+1, A+1+tot, a[i])-A;
for (int i = 1; i <= n; i++) update(i, 1);
for (int i = 1; i <= m; i++)
if (q[i].op != 2)
q[i].k = lower_bound(A+1, A+1+tot, q[i].k)-A;
for (int i = 1; i <= m; i++) {
if (q[i].op == 1)
printf("%d\n", Rank(q[i].l, q[i].r, q[i].k-1)+1);
else if (q[i].op == 2) printf("%d\n", kth(q[i].l, q[i].r, q[i].k));
else if (q[i].op == 3) {
update(q[i].l, -1);
a[q[i].l] = q[i].k;
update(q[i].l, 1);
}
else if (q[i].op == 4) {
int g = Rank(q[i].l, q[i].r, q[i].k-1);
if (!g) puts("-2147483647");
else printf("%d\n", kth(q[i].l, q[i].r, g));
}
else {
int g = Rank(q[i].l, q[i].r, q[i].k);
if (g == q[i].r-q[i].l+1) puts("2147483647");
else printf("%d\n", kth(q[i].l, q[i].r, g+1));
}
}
return 0;
}
洛谷 P3380 【模板】二逼平衡树(树套树)的更多相关文章
- BZOJ3196 & 洛谷3380:二逼平衡树——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=3196 https://www.luogu.org/problemnew/show/P3380 (题 ...
- bzoj 3196 Tyvj 1730 二逼平衡树(线段树套名次树)
3196: Tyvj 1730 二逼平衡树 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1807 Solved: 772[Submit][Stat ...
- bzoj 3196/ Tyvj 1730 二逼平衡树 (线段树套平衡树)
3196: Tyvj 1730 二逼平衡树 Time Limit: 10 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description ...
- BZOJ3196 二逼平衡树 ZKW线段树套vector(滑稽)
我实在是不想再打一遍树状数组套替罪羊树了... 然后在普通平衡树瞎逛的时候找到了以前看过vector题解 于是我想:为啥不把平衡树换成vector呢??? 然后我又去学了一下ZKW线段树 就用ZKW线 ...
- BZOJ3196 二逼平衡树 【线段树套平衡树】
题目 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排名 2.查询区间内排名为k的值 3.修改某一位值上的数值 4.查询k在区间内的前驱(前驱 ...
- BZOJ 3196 Tyvj 1730 二逼平衡树:线段树套splay
传送门 题意 给你一个长度为 $ n $ 有序数列 $ a $ ,进行 $ m $ 次操作,操作有如下几种: 查询 $ k $ 在区间 $ [l,r] $ 内的排名 查询区间 $ [l,r] $ 内排 ...
- 洛谷.3835.[模板]可持久化平衡树(fhq treap)
题目链接 对每次Merge(),Split()时产生的节点都复制一份(其实和主席树一样).时间空间复杂度都为O(qlogq).(应该更大些 因为rand()?内存真的爆炸..) 对于无修改的操作实际上 ...
- bzoj 3196 Tyvj 1730 二逼平衡树【线段树 套 splay】
四舍五入就是个暴力. 对于线段树的每个区间都开一棵按权值排序的splay 对于第二个操作,二分一下,每次查询mid的排名,复杂度 $ O(nlog(n)^{3}) $ 其余的操作都是$ O(nlog( ...
- [BZOJ3196] [Tyvj1730] 二逼平衡树(线段树 套 Splay)
传送门 至少BZOJ过了,其他的直接弃. 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 1.查询k在区间内的排名 2.查询区间内排名为k的值 3.修改某一位值上的 ...
- 洛谷P3380 【模板】二逼平衡树(树套树)(线段树+树状数组)
P3380 [模板]二逼平衡树(树套树) 题目描述 您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作: 查询k在区间内的排名 查询区间内排名为k的值 修改某一位值上的数 ...
随机推荐
- Ionic01 简单介绍、环境搭建、创建项目、项目结构、创建组件、创建页面、子页面跳转
1 Ionic 基本介绍 Ionic 是一款基于 Angular.Cordova 的强大的 HTML5 移动应用开发框架 , 可以快速创建一个跨平台的移动应用.可以快速开发移动 App.移动端 WEB ...
- _GNU_SOURCE宏
打开_GNU_SOURCE这个宏可以打开一些功能,比如为了在Linux系统上编译使用带有检测文件type的宏(S_ISxxxx): S_ISREG() //传入stat结构的st_mode,下同.是否 ...
- c语言学习笔记 break语句
比如 for() { for() { break; } } 那个break语句只是跳出它所在的那个for循环,不会把最外面的for循环都跳出去.
- Smarty3——复合变量修饰器输
你可以联合使用多个修饰器. 它们会按复合的顺序来作用于变量,从左到右. 它们必须以| (竖线)进行分隔,以‘:’号设置参数 {$articleTitle} {$articleTitle|upper|s ...
- 使用 Sentry集中处理错误
Sentry的简介 Sentry 是一个实时的事件日志和聚合平台,基于 Django 构建. Sentry 可以帮助你将程序的所有 exception 自动记录下来,处理 exception 是每个程 ...
- ef增删改查
[C#]Entity Framework 增删改查和事务操作 1.增加对象 DbEntity db = new DbEntity(); //创建对象实体,注意,这里需要对所有属性进行赋值(除了自动增长 ...
- Odometry的发布和发布odom到base_link的tf变换
转载自http://www.ncnynl.com/archives/201702/1328.html ROS发布nav_msgs/Odometry消息,以及通过tf从“odom”坐标系到“base_l ...
- 使用EasyUI,关于日期格式的文本框按照正常方式获取不到值的问题
这是个小菜在实际工作中遇到的问题,相信很多EasyUI新手很可能也遇到这样的问题,因此小菜觉得有必要拿出来分享一下. 这个问题要从EasyUI的datebox组件说起,小菜用这个组件的时候,发现用$( ...
- (转)第一次发博客-说说我的B/S开发框架(asp.net mvc + web api + easyui)
原文地址:http://www.cnblogs.com/xqin/archive/2013/05/29/3105291.html 前言 这些年一直在.net下做企业web系统开发,前前后后经历的不同的 ...
- FractalNet(分形网络)
-Argues that key is transitioning effectively from shallow to deep and residual representations are ...